• 제목/요약/키워드: CRF(Conditional Random Field)

검색결과 21건 처리시간 0.025초

Continuous Conditional Random Field에 의한 인터넷 쇼핑몰 신규 고객등급 예측 (Prediction of New Customer's Degree of Loyalty of Internet Shopping Mall Using Continuous Conditional Random Field)

  • 안길승;허선
    • 대한산업공학회지
    • /
    • 제41권1호
    • /
    • pp.10-16
    • /
    • 2015
  • In this study, we suggest a method to predict probability distribution of a new customer's degree of loyalty using C-CRF that reflects the RFM score and similarity to the neighbors of the customer. An RFM score prediction model is introduced to construct the first feature function of C-CRF. Integrating demographical similarity, purchasing characteristic similarity and purchase history similarity, we make a unified similarity variable to configure the second feature function of C-CRF. Then parameters of each feature function are estimated and we train our C-CRF model by training data set and suggest a probabilistic distribution to estimate a new customer's degree of loyalty. An example is provided to illustrate our model.

세미-마르코프 조건 랜덤 필드 기반의 수화 적출 (Sign Language Spotting Based on Semi-Markov Conditional Random Field)

  • 조성식;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권12호
    • /
    • pp.1034-1037
    • /
    • 2009
  • 수화 적출이란 연속된 영상에서 수화의 시작과 끝점을 찾고, 이를 사전에 정의된 수화 단어로 인식하는 방법을 말한다. 수화는 매우 다양한 손의 움직임과 모양으로 구성되어 있고, 그 변화가 다양하여 적출에 많은 어려움이 있다. 특히, 다양한 길이의 궤적 정보로 구성된 수화는 길이가 긴 수화에 대해 짧은 길이를 갖는 수화가 인식에 필요한 정보를 추출하기 어려운 문제점 있다. 본 논문에서는 다양한 길이를 갖는 입력 데이터의 특징을 반영할 수 있는 Semi-Markov Conditional Random Field에 기반하여 다양한 수화의 길이에 강인하게 수화를 적출하는 방법을 제안한다. 성능 평가를 위해 미국 수화와 한국 수화 데이터베이스를 사용하여 연속된 수화 영상에서의 수화 적출 성능을 평가하였고, 실험 결과 기존의 Hidden Markov Model과 Conditional Random Field보다 뛰어난 성능을 보였다.

Higher-Order Conditional Random Field established with CNNs for Video Object Segmentation

  • Hao, Chuanyan;Wang, Yuqi;Jiang, Bo;Liu, Sijiang;Yang, Zhi-Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3204-3220
    • /
    • 2021
  • We perform the task of video object segmentation by incorporating a conditional random field (CRF) and convolutional neural networks (CNNs). Most methods employ a CRF to refine a coarse output from fully convolutional networks. Others treat the inference process of the CRF as a recurrent neural network and then combine CNNs and the CRF into an end-to-end model for video object segmentation. In contrast to these methods, we propose a novel higher-order CRF model to solve the problem of video object segmentation. Specifically, we use CNNs to establish a higher-order dependence among pixels, and this dependence can provide critical global information for a segmentation model to enhance the global consistency of segmentation. In general, the optimization of the higher-order energy is extremely difficult. To make the problem tractable, we decompose the higher-order energy into two parts by utilizing auxiliary variables and then solve it by using an iterative process. We conduct quantitative and qualitative analyses on multiple datasets, and the proposed method achieves competitive results.

회귀나무 분석을 이용한 C-CRF의 특징함수 구성 방법 (Method to Construct Feature Functions of C-CRF Using Regression Tree Analysis)

  • 안길승;허선
    • 대한산업공학회지
    • /
    • 제41권4호
    • /
    • pp.338-343
    • /
    • 2015
  • We suggest a method to configure feature functions of continuous conditional random field (C-CRF). Regression tree and similarity analysis are introduced to construct the first and second feature functions of C-CRF, respectively. Rules from the regression tree are transformed to logic functions. If a logic in the set of rules is true for a data then it returns the corresponding value of leaf node and zero, otherwise. We build an Euclidean similarity matrix to define neighborhood, which constitute the second feature function. Using two feature functions, we make a C-CRF model and an illustrate example is provided.

Continuous Conditional Random Field Model for Predicting the Electrical Load of a Combined Cycle Power Plant

  • Ahn, Gilseung;Hur, Sun
    • Industrial Engineering and Management Systems
    • /
    • 제15권2호
    • /
    • pp.148-155
    • /
    • 2016
  • Existing power plants may consume significant amounts of fuel and require high operating costs, partly because of poor electrical power output estimates. This paper suggests a continuous conditional random field (C-CRF) model to predict more precisely the full-load electrical power output of a base load operated combined cycle power plant. We introduce three feature functions to model association potential and one feature function to model interaction potential. Together, these functions compose the C-CRF model, and the model is transformed into a multivariate Gaussian distribution with which the operation parameters can be modeled more efficiently. The performance of our model in estimating power output was evaluated by means of a real dataset and our model outperformed existing methods. Moreover, our model can be used to estimate confidence intervals of the predicted output and calculate several probabilities.

모바일 레이저 스캐닝 데이터로부터 철도 시설물 인식에 관한 연구 (Railway Object Recognition Using Mobile Laser Scanning Data)

  • ;좌윤석;손건호;원종운;이석
    • 한국산업정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.85-91
    • /
    • 2014
  • 본 연구는 MLS 데이터로부터 자동으로 철도 시설물들을 인식하여 시설물 간의 기하학적인 공간정보를 추출하는데 기여 하고자 한다. 본 연구에서 제안된 방법은 9개 주요 철도 시설물(노반, 레일, 철로, 수목, 플렛폼, 방음벽, 철주, 절연체, 고압선)들의 분류를 목적으로 하고 있다. 이를 위해 제안된 방법은 크게 두 단계로 나뉘어 진행된다. 첫 번째 단계에서는 포인트, 라인, 체적과 수직 프로파일 레벨에서 데이터의 맥락 특징(contextual feature)들이 추출된다. 두 번째 단계에서는 CRF(Conditional Random Field)가 맥락 분류자(contextual classifier)로 사용되어 각 데이터 포인트에 객체 정보가 할당되고 철도 시설물들이 분류된다. 사용된 CRF 모델은 다른 맥락 분류자 와는 달리 로컬지역에서 데이터들의 분류정보가 일관성을 유지하게 하는 장점이 있다. 제안된 방법의 성능은 commission과 omission 오류분석을 통해 입증되었다.

연속된 수화 인식을 위한 자동화된 Coarticulation 검출 (Automatic Coarticulation Detection for Continuous Sign Language Recognition)

  • 양희덕;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권1호
    • /
    • pp.82-91
    • /
    • 2009
  • 수화 적출은 연속된 손 동작에서 의미 있는 수화 단어를 검출 및 인식하는 것을 말한다. 수화는 손의 움직임과 모양의 변화가 다양하기 때문에 수화 문장에서 수화를 적출하는 것은 쉬운 문제가 아니다. 특히, 자연스러운 수화 문장에는 의미 있는 수화, 수화가 아닌 손동작이 무작위로 발생한다. 본 논문에서는 CRF(Conditional Random Field)에 기반한 적응적 임계치 모델을 제안한다. 제한된 모델은 수화 어휘집에 정의된 수화 손동작과 수화가 아닌 손동작을 구별하기 위한 적응적 임계치 역할을 수행한다. 또한, 수화 적출 및 인식의 성능 향상을 위해 손 모양 기반 수화 인증기, 짧은 수화 적출기, 부사인(subsign) 추론기를 제안된 시스템에 적용하였다. 실험 결과, 제안된 방법은 연속된 수화 동작 데이타에서 88%의 적출률, 사전에 적출된 수화 동작 데이타에서 94%의 인식률을 보였으며, 적응적 임계치 모델, 짧은 수화 적출기, 손 모양 기반 수화 인증기, 부사인 추론기를 사용하지 않은 CRF 모델은 연속된 수화 동작 데이터에서 74%의 적출률, 사전에 적출된 수화 동작 데이타에서 90%의 인식률을 보였다.

CRF-Based Figure/Ground Segmentation with Pixel-Level Sparse Coding and Neighborhood Interactions

  • Zhang, Lihe;Piao, Yongri
    • Journal of information and communication convergence engineering
    • /
    • 제13권3호
    • /
    • pp.205-214
    • /
    • 2015
  • In this paper, we propose a new approach to learning a discriminative model for figure/ground segmentation by incorporating the bag-of-features and conditional random field (CRF) techniques. We advocate the use of image patches instead of superpixels as the basic processing unit. The latter has a homogeneous appearance and adheres to object boundaries, while an image patch often contains more discriminative information (e.g., local image structure) to distinguish its categories. We use pixel-level sparse coding to represent an image patch. With the proposed feature representation, the unary classifier achieves a considerable binary segmentation performance. Further, we integrate unary and pairwise potentials into the CRF model to refine the segmentation results. The pairwise potentials include color and texture potentials with neighborhood interactions, and an edge potential. High segmentation accuracy is demonstrated on three benchmark datasets: the Weizmann horse dataset, the VOC2006 cow dataset, and the MSRC multiclass dataset. Extensive experiments show that the proposed approach performs favorably against the state-of-the-art approaches.

LSTM-CRF를 이용한 생명과학분야 개체명 인식 (Bio-NER using LSTM-CRF)

  • 최경호;황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.85-89
    • /
    • 2015
  • 본 논문에서는 시퀀스 레이블링 문제에 적합하다고 알려진 Long Short Term Memory Recurrent Neural Network에 아웃풋간의 의존관계를 추가한 LSTM-CRF(Conditional Random Field)를 이용하여 생명과학분야 개체명 인식 시스템을 구축하였다. 학습 및 평가를 위해 BioNLP 2011-st REL data를 개체명 인식 실험에 사용하였으며, 실험결과 LSTM-CRF를 사용한 시스템은 81.83의 F1-score를 기록해, 기존의 시스템인 "BANNER"의 F1-score 81.96과 비슷한 성능을 보였다.

  • PDF

조건부 랜덤 필드와 컨볼루션 신경망을 이용한 의미론적인 객체 분할 방법 (Semantic Segmentation using Convolutional Neural Network with Conditional Random Field)

  • 임수창;김도연
    • 한국전자통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.451-456
    • /
    • 2017
  • 컴퓨터비전에서 가장 기본적이고, 복잡한 문제를 수반하는 의미론적 분할(Semantic segmentation)은 이미지의 각 픽셀을 특정 객체로 분류하며, 레이블(label)을 지정하는 작업을 수행한다. 기존에 연구되어온 확률적 그래프 모델인 MRF와 CRF는 픽셀 수준의 라벨링 작업의 정확도를 높이는 효과적인 방법으로 연구되어왔다. 본 논문에서는 최근 각광받고 있는 딥러닝의 한 부류인 CNN과 확률 모델인 CRF를 결합한 형태의 의미론적 분할 방법을 제안하였다. 학습과 성능 검증을 위하여 Pascal VOC 2012 이미지 데이터베이스를 사용하였고, 학습에 사용되지 않은 임의의 이미지를 이용하여 테스트를 진행 하였다. 연구의 결과로서 기존 의미론적 분할 알고리즘보다 더욱 뛰어난 분할 성능을 보여주었다.