• 제목/요약/키워드: CRDI diesel engine

검색결과 69건 처리시간 0.023초

CRDI 엔진 전자제어컨트롤러(ECU)의 노킹 판별 및 엔진 밸런스 보정 알고리즘 개발 (Development of Knocking discrimination and Engine balance Correction Algorithm of CRDI Engine ECU)

  • 김화선;장성진;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.391-394
    • /
    • 2012
  • 최근 국 내외의 강화된 배출가스 규제 기준을 만족시킬 수 있는 CRDI 디젤엔진을 산업용 엔진에 적용하기 위해, 제작사에서만 제어할 수 있는 ECU를 사용자의 요구대로 분사시기와 분사량을 조절할 수 있는 엔진 제어 알고리즘을 개발하여, 엔진 성능 향상과 배출가스 저감 등을 위한 테스트 및 검증에 사용하고자 한다. 이러한 CRDI 디젤엔진 전용 Emulator를 개발하기 위해 CRDI 엔진 제어 ECU의 입력 요소 중 CKP와 CMP 센서의 작동원리를 이용하여 디젤 노킹을 판별하고 엔진 밸런스 보정 알고리즘의 설계 방안을 제안함으로써 연비 향상 및 유해 배출가스의 저감을 위한 효율적인 개선 방안을 제안한다.

  • PDF

CRDI 디젤엔진의 연료분사기기가 연소특성에 미치는 영향 (Effects of the Fuel Injection Timing on the Combustion Characteristics in CRDI Diesel Engine)

  • 김주신;김경현;이한성;임상우;강희영;고대권
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.10-15
    • /
    • 2011
  • This paper describes the engine performance and combustion characteristics of a CRDI diesel engine, operated by electronically controlled diesel fuel injector with variable injection timing. This experiment focused on fuel injection timing and pressure about combustion characteristics of CRDI diesel engine. EGR was excepted because it would be furtherly analyzed with additional experiments. The experiment was conducted under the circumstance of engine torque for 4, 8, 12 and 16 kgf-m and fuel injection timing for $15^{\circ}$, $10^{\circ}$ and $5^{\circ}$ BTDC, at the engine speed of 1100, 1400, 1700 and 2000 rpm. Fuel injection was controlled to retard or advance initiation of the injection event by electronically controlled fuel injection unit injector on the personal computer. When fuel was injected into the cylinders of a CRDI diesel engine it would go through ignition delay before starting of combustion. Therefore, fuel injection timing of CRDI diesel engine had a significant effect upon performance and combustion characteristics. Depending on the injection timing the fuel consumption rate following the rotational speed and torque was 3~78 g/psh (1.7~30.6%). The range of fuel injection timing that resulted in low fuel consumption overall was BTDC 15-10 degrees.

상용 CRDI 디젤기관에서 바이오디젤유 20% 적용시 내구시험에 따른 배기배출물 특성 (The Characteristics of Exhaust Emissions by Durability Test with Biodiesel Fuel (20%) in a Commercial CRDI Diesel Engine)

  • 최승훈;오영택
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.379-383
    • /
    • 2008
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 20% biodiesel blended fuel (BDF 20%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 1.9%), smoke (below 4.1%), NOx (below 3.7%) and durability characteristics in spite of operation of 150 hours run with BDF 20%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.19% at $100^{\circ}C$.

CRDI 방식 디젤기관의 초음파 조사 Bio-diesel 혼합연료 적용 특성에 관한 실험 연구 (Experimental Study on the Application Characteristics of Bio-diesel blended Fuel by Ultrasonic Irradiation in CRDI type Diesel Engine)

  • 정영철;임석연;박성영;최두석;류정인
    • 한국분무공학회지
    • /
    • 제12권3호
    • /
    • pp.131-137
    • /
    • 2007
  • This is an experimental study on characteristics of engine performance and discharged materials in common-rail type diesel engine. The bio-diesel fuel is mixed with the diesel fuel in common use at the ratio of 20% or 100%. The diesel fuel and blended fuel is irradiated by ultrasonic wave energy. The diese1 fuel, blended fuel, reformed diesel fuel and reformed blended fuel by ultrasonic wave energy are applied to the experimental engine individually. The results are compared with one of the diesel fuel in common use and analyzed.

  • PDF

CPF를 장착한 CRDI 디젤엔진에 바이오 혼합연료 사용에 따른 배출가스 특성 및 입자수분포 특성 (Characteristics of Exhaust Emissions and Particle Size Distribution using Biofuel Blended Diesel Fuel in CRDI Diesel Engine with CPF)

  • 김화남;성용하;김태준;최병철;임명택;서정주
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.5-12
    • /
    • 2008
  • We measured emission characteristics of CRDI diesel engine equipped with a commercial CPF. Experimental parameters adopted a neat diesel fuel, a blend of diesel fuel with 20% biodiesel, a blend of diesel fuel with 15% biodiesel and 5% ethanol. The experiments were carried out to measure the emission and engine performance according to ESC 13-mode cycles. The maximum torque with biodiesel blend fuel is slightly lower than that of neat diesel fuel in the entire the 13-mode cycles, and 5% ethanol and 15% biodiesel blend fuel is slightly higher than that of neat diesel fuel. THC and CO emissions of the biofuel blended diesel fuel were slightly increased and decreased, and mean conversion efficiencies of THC and CO on the commercial CPF were achieved about 70$\sim$87% in the ESC 13-mode. From the measurement by the Scanning Mobility Particle Sizer(SMPS), the total number and mass of nano-sized particles by a commercial CPF were decreased about 97.8% and 96.8 % in the range of the nano-size from 10.6 to 385nm, respectively.

  • PDF

리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교 (Diesel Engine Intake Port Analysis Using Reverse-engineering Technique)

  • 김창수;박성영
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.

직접분사식 압축착화 디젤엔진의 분사시기 변화에 따른 연소 및 성능특성에 관한 연구 (A Study on the Combustion and Performance Characteristics in Compression Ignition CRDI Diesel Engine)

  • 김기복;김치원;윤창식
    • 한국산업융합학회 논문집
    • /
    • 제19권1호
    • /
    • pp.31-38
    • /
    • 2016
  • Since the oil shock of 1970's there was a strong upward tendency for the use of the high viscosity and poorer quality fuels. Therefore the misfiring engine occurs due to the decrease of quantity injected for lean burn and emission control in Compression Ignition Common Rail Direct Injection diesel engine. In this study, it is designed and used the test bed which is installed with fuel injector controller. In addition to equipped engine using CRDI by controlling the injection timing with mapping modulator, it has tested and analyzed the engine performance and combustion characteristics, as it is varied that they are the operating parameters: fuel injected quantity, engine speed and injection timing.

CNG/Diesel 이종연료용 엔진의 성능 및 배출가스 특성에 대한 연구 (Study on Performance and Emission Characteristics of CNG/Diesel Dual-Fuel Engine)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.869-874
    • /
    • 2011
  • CNG/diesel dual-fuel 엔진은 CNG 를 주 연료로 사용하고 소량의 디젤을 착화제로서 실린더 내에 분사한다. 본 연구에서는 기존의 디젤엔진을 커먼레일직접분사(CRDI)를 통하여 고압으로 디젤을 분사하고, 예혼합을 위하여 CNG 를 흡기포트에 분사하는 CNG/diesel dual-fuel 엔진으로 개조하였다. CNG/diesel dualfuel engine 은 기존의 디젤엔진과 동등한 수준의 토크 및 출력성능을 나타내었다. 또한, CNG 대체율은 CNG/diesel dual-fuel 엔진의 전체 운전영역에 대하여 89% 이상을 만족시켰다. Dual-fuel 엔진의 PM 배출농도는 디젤엔진보다 94% 더 낮게 나타났지만, NOx 배출농도는 더 높게 나타났다.

바이오디젤유를 이용한 CRDI방식 디젤기관의 흡기포트내 선회기 적용 특성에 관한 연구 (A Study on the Application Characteristics of Biodiesel Fuel in a CRDI Diesel Engine on the Swirler in Intake Manifold)

  • 임석연;정영철;오동진;류정인
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.17-23
    • /
    • 2007
  • This study aims to investigate the property of engine performance and the material property of exhaust gas by application of the intake swirler The fuel of BDF 20 was made by mixing 80% of diesel fuel and 20% of biodiesel fuel. These fuels were used and tested in the diesel engine of CRDI type used currently. The swirler was made by streamlined shape to lessen the intake resistance, The three types of its wing angle are $20^{\circ}$, $40^{\circ}$ and $60^{\circ}$. From experimental results, we found that the characteristics of engine performance, soot was effective in wing angle of $20^{\circ}$ and NOx was effective in $60^{\circ}$.

커먼레일 디젤기관에서 BDF 20%에 대한 내구특성 (The Durability Characteristics for BDF 20% in a Common Rail Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.32-37
    • /
    • 2011
  • Biodiesel fuel is already remarkable alternative fuel in many countries. So, many studies are performed on the environmental or economic effects as well as the characteristics of diesel engine fueled biodiesel in combustion and emission. In this study, an CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 20% biodiesel blended fuel (BDF 20%) with city mode in excess of 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. To check the engine parts (valve and injector), the engine was inspected after test. It was concluded that there were no unusual deteriorations of the engine, or any unusual changes in engine power and exhaust emissions in spite of operation of 300 hours with BDF 20%.