• Title/Summary/Keyword: COMET

Search Result 483, Processing Time 0.034 seconds

A Monitoring Observation of Comet 17P/Holmes during 2014 Apparition

  • Kwon, Yuna;Ishiguro, Masateru;Hanayama, Hidekazu;Kuroda, Daisuke;Sarugaku, Yuki;Kim, Yoonyoung;Vaubaillon, Jeremie J.;Takahashi, Jun;Watanabe, Jun-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2015
  • We performed a monitoring campaign of a Jupiter-Family comet 17P/Holmes, which underwent the dramatic outburst on 23.3 October 2007 at $r_h=2.44AU$, to investigate the secular change in activity and subsequent physical properties of the inner dust coma before and after the 2014 perihelion passage. The monitoring observation was carried out over two years: from May to July 2013, from July to November 2014, and January 2015 with ~weekly cadence. We conducted photometry monitoring in Rc band using four ground-based telescopes, which are the Ishigakijima Astronomical Observatory 105cm telescope, the Okayama Astrophysical Observatory 50cm telescope, the Nishi-Harima Astronomical Observatory 2m telescope, and the T30 51cm i-telescope, respectively. In order to examine the dust production rate, we put a constraint upon the physical distance from the center of the nucleus as rho=2500km and conducted aperture photometry. We found that the average absolute Rc magnitude over the period between July to November 2014 was mR(1,1,0)~12.29, which was approximately 1.5 magnitudes fainter than those of 2013 data. Accordingly, comet 17P/Holmes seemed to become dormant, although a minor eruption was detected on January 26, 2015. In this presentation, we will introduce our ongoing project for 17P/Holmes and discuss why the nucleus becomes dormant within one orbital period.

  • PDF

Multiple Outbursts of a Short-Periodic Comet 15P/Finlay

  • Ishiguro, Masateru;Kuroda, Daisuke;Kim, Yoonyoung;Kwon, Yuna;Hanayama, Hidekazu;Miyaji, Takeshi;Honda, Satoshi;Takahashi, Jun;Watanabe, Jun-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • 15P/Finlay is one of the Jupiter-Family Comets that has long been known since the late 19 century. The comet maintains the perihelion around 1.0 AU over a century, without showing any prominent activities (i.e. fragmentation or eruption) since the discovery. According to reports in unpublished observations, the comet exhibited an outburst in the middle of 2014 December. We conducted a imaging observation of 15P/Finlay just after the report, from 2014 December 23 to 2015 February 18 using three telescopes (the Okayama Astrophysical Observatory 50-cm telescope, the Ishigakijima Astronomical Observatory 105-cm telescope, and the Nishi-Harima Astronomical Observatory 2-m telescope), which constitute a portion of the OISTER (an inter-university observation network in the optical and infrared wavelengths). As a result of the frequent observations, we witnesses the second outburst around UT 2015 January 16. Such cometary outbursts draw the attention to researchers on ground that they could offer insight into the internal structure of comets, following a historical outburst occurred at 17P/Holmes on 2007 October 23. Although cometary outbursts have been often reported mostly in unpublished observations or unreviewed reports, it should be emphasized that there are not a sufficient number of astrophysical research which characterizes the physical properties by observing the aftermaths. This presentation provides a new observational result of 15P/Finlay outburst. Based on the morphological development of the dust cloud as well as the near-nuclear magnitude, we will derive the kinetic energy of the outburst. Finally we plan to compare the results of 15P/Finlay with those of analogical events at 17P/Holmes and P/2010 V1 (Ikeya-Murakami).

  • PDF

Evaluation of DNA damage in Pesticide Sprayers using Single Cell Gel Electrophoresis (단세포전기영동법(single Cell Gel Electrophoresis Assay)을 이용한 농약 살포자의 DNA손상 평가)

  • 이연경;이도영;이은일;이동배;류재천;김해준;설동근
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.128-134
    • /
    • 2001
  • Single cell gel electrophoresis (SCGE) assay, also called comet assay, is a rapid and sensitive method to detect DNA damage in single cell level. To evaluate the DNA damage of lymphocytes of pesticides sprayers, SCGE assay was carried out for 50 pesticides sprayer and 58 control subjects. They were interviewed with structured questionnaire to get the information about the kinds and amount of pesticide. Insecticides and fungicides were predominant among pesticides. Major components of pesticides were organophosphorus, organosulfate, cartap, carbamates, and triazole. Sprayed pesticides were classified into two groups. Group I included organophosphorus, organoarsenic, organotin, tetrazine, triazole and gramoxone, which were known to cause DNA damages. Group II pesticide were carbamates, surfactants, organosulfates, etc., which were not found as DNA damaging agents in scientific documents. Olive tail moments of 100 lymphocytes were measured by KOMET 3.1 program for each person. The means of tail moments were compared between farmers exposed to pesticides and control subjects. Farmers showed higher tail moments than control subjects (2.07$\pm$1.40 vs 1.53$\pm$0.77, p<0.05). The means of tail moments also were compared among group I sprayers (n=36), group II sprayers (n=24) and, control subject, and the means or tail moments were 3.4s$\pm$3.2o, 2.66$\pm$2.20 and 1.53$\pm$0.77 respectively. The difference between means of group I sprayers and controls was statistically significant (p<0.05). In conclusion, this study showed higher DNA damage in farmers exposed to pesticides than control subjects, and comet assay could be useful as a biological monitoring method of genotoxic pesticides for farmers.

  • PDF

Evaluation of in vivo Genotoxicity of Plant Flavonoids, Quercetin and Isoquercetin (식물유래 플라보노이드 Quercetin과 Isoquercetin의 생체 내 유전독성평가)

  • Pak, Bumsoo;Han, Sehee;Lee, Jiyeon;Chung, Young-Shin
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.5
    • /
    • pp.356-364
    • /
    • 2016
  • In vivo genotoxic potential of isoquercetin, a plant common flavonoid, in comparison with quercetin was investigated for the DNA breakage and the clastogenicity endpoints. Male ICR mice were administered by oral gavage for 3 days with $3{\times}0.5%$ carboxymethyl cellulose (CMC), 3 ${\times}$ isoquercetin (250, 500 mg/kg/day), 3 ${\times}$ quercetin (250, 500 mg/kg/day) and 2 ${\times}$ ethyl methanesulfonate (EMS, 200 mg/kg/day). Tissues were collected 48 hours after the first treatment and within 3 hours after the last treatment. The DNA damages were evaluated using Comet assay in liver and stomach, while the clastogenicities were determined using micronucleus test in bone marrow of same animals. The treatment of isoquercetin as well as quercetin did not cause the DNA damages in liver and stomach, and not induce the frequencies of micronucleus polychromatic erythrocytes in bone marrow. In conclusion, isoquercetin as well as quercetin did not cause the DNA breakages and the chromosomal damages in vivo system in these study conditions.

Far-ultraviolet Observations of the Comet C/2001 Q4 (NEAT)

  • Lim, Yeo-Myeong;Min, Kyoung-Wook;Seon, K.I.;Han, W.;Edelstein, J.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.20.1-20.1
    • /
    • 2011
  • We present the results of far-ultraviolet (FUV) observations of comet C/2001 Q4 (NEAT) obtained with Far-ultraviolet Imaging Spectrograph (FIMS) on board the Korean microsatellite STSAT-1, which operated at an altitude of 700 km in a sun-synchronous orbit. FIMS is a dual-channel imaging spectrograph (S channel 900-1150 ${\AA}$, L channel 1350-1750 ${\AA}$, ${\lambda}/{\Box}{\lambda}$ ~ 550) with large image fields of view (S: $4^{\circ}.0{\times}4'.6$, L: $7^{\circ}.5{\times}4'.3$, angular resolution 5'-10') optimized for the observation of diffuse emission of astrophysical radiation. Comet C/2001 Q4 (NEAT) was observed with a scanning survey mode when it was located around the perihelion between 8 and 15 May 2004. Several important emission lines were detected including S I (1425, 1474 ${\AA}$), C I (1561, 1657 ${\AA}$) and several emission lines of CO $A1{\cap}-X1{\sum}+$ system in the L channel. We estimated QCO = ($2.58\;{\pm}\;0.64)\;{\times}\;1028$ s-1 from the production rate of CO 1510 ${\AA}$. We obtained L-channel image which have map size of $5^{\circ}{\times}5^{\circ}$. The image was constructed for the wavelength band of L-channel (1350-1750 ${\AA}$).We also obtained radial profile of S I, C I, CO with line fitting from central coma.

  • PDF