• Title/Summary/Keyword: CO gas sensing

Search Result 219, Processing Time 0.03 seconds

Development of Gas Leak Detecting System Based on Quantum Technology (양자기술기반 가스 누출 감지 시스템 개발)

  • Kwon, Oh Sung;Park, Min Young;Ban, Changwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.57-62
    • /
    • 2021
  • Gas is an energy source widely used in general households and industrial sites, and is also a process material widely used in petrochemical and semiconductor processes. However, while it is easy to use, it can cause large-scale human damage due to leakage, explosion, and human inhalation. Therefore, a gas facility safety management solution that can be safely used at home and industrial sites is essential. In particular, the need to develop advanced gas safety solutions is emerging as gas facilities are aging. In this paper, a technology was developed to measure the presence and concentration of gas leaks from a distance by irradiating photons, the minimum energy unit that can no longer be divided into gas facilities, and analyzing the number of reflected photons. This overcomes technical limitations such as short detection distance and inability to detect fine leaks, which are the limitations of conventional electric/chemical gas sensors or infrared-based gas leak detectors.

Ethanol Gas Sensing Properties of NiO-based Composite Oxide Semiconductor with Co3O4 Nanoparticles (산화코발트 나노입자의 첨가에 따른 산화니켈 기반 반도체 산화물의 에탄올 가스 검출 특성 향상)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.382-388
    • /
    • 2016
  • NiO nanoparticles were synthesized by hydrothermal method for the application to ethanol gas sensor. They were composited with $Co_3O_4$ nanoparticles to improve the sensitivity to ethanol gas. Scanning electron microscopy revealed that the synthesized NiO nanoparticles were plate-shaped with the approximate size and thickness of 60 - 120 nm and 20 nm, respectively. On the other hand, $Co_3O_4$ nanoparticles mixed with NiO was observed to be spherical with the size range of 30 - 50 nm. The sensitivities of NiO sensors composited with $Co_3O_4$ nanoparticles at an optimal ratio of 8 : 2 were enhanced to approximately 1.44 - 1.79 times as high as those of as-synthesized NiO sensors for the ethanol concentration of 10 - 200 ppm at $200^{\circ}C$. The mechanism of the improved ethanol gas sensing of the NiO sensors composited with $Co_3O_4$ nanoparticles was discussed.

Fabrication and CO2-sensing Characteristics of Optical Band-Pass Filter for 4.3 CO2 Wavelength (4.3 μm 파장 Optical Band-Pass Filter의 제작과 CO2 감도 특성)

  • Lee, Sang-Hoon;Kim, Soo-Hyun;Kim, Kwang-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.210-215
    • /
    • 2002
  • Optical Band-pass Filter(BPF) for the selected wavelength of 4300 nm was designed and fabricated on Si wager by alternately depositing Ge and $SiO_2$ thin layers by an electron beam evaporation technique. The fabricated BPF showed the optical transmittance characteristics of 58.2% with FWHM(Full Width at Half Maximum) of 204 nm at 4300 nm, but showed the transmittance less than 5% due to the reflectance over all the wavelength ranges except 4300 nm band. The $CO_2$ sensitivity of BPF was investigated with the transmittance as a function of $CO_2$ gas concentration using a sensing cell attached to FT-IR instrument. The transmittance of BPF was almost linearly decreased with increasing of $CO_2$ concentration in the range of from 500 to 5000 ppm. The sensing structure using double BPFs showed higher slop of transmittance vs $CO_2$ concentration, and thus higher gas sensitivity than that using a single BPF, even though the former had relatively lower transmittance.

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem;Park, Sangkwon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.417-428
    • /
    • 2018
  • In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.

Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics (피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성)

  • Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-197
    • /
    • 2014
  • The electrode for gas sensor was prepared by using pitch-based activated carbon fibers and polyvinyl alcohol (PVA) to investigate the toxic gas sensing characteristics. The physicochemical properties of activated carbon fibers electrode for gas sensor were analyzed with SEM and BET. Toxic gases sensing property of the electrode was also identified by different toxic gases such as $NH_3$, NO and $CO_2$. The specific surface area of activated carbon fibers electrode for gas sensor was decreased by 33% owing to PVA used as a binder compared with the activated carbon fibers. However, its pore size distribution of the ACF electrode was not greatly influenced by PVA. The activated carbon fibers electrode for gas sensor responded to toxic gases by electron hopping unlike semiconductor based gas sensors. In this study, activated carbon fibers electrode was decreased to 7.5% in resistance for the NH3 gas of the 100 ppm concentration and its $NH_3$ gas sensing property was confirmed the most excellent compared with other toxic gases.

Ethanol Gas Sensing Properties of In2O3 Nanowires Coated with Co3O4 Nanoparticles (Co3O4 나노입자가 코팅된 In2O3 나노와이어의 에탄올 가스 검출 특성)

  • Park, Sunghoon;Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • $In_2O_3$ nanowires were coated with $Co_3O_4$ nanoparticles to investigate the improvement of ethanol gas sensing performance compared with as-synthesized $In_2O_3$ nanowires. Scanning electron microscopy showed that the nanowires synthesized by VLS mechanism had diameters and lengths of approximately 50-100 nm and a few micrometers, respectively. $Co_3O_4$ nanoparticles produced by hydrothermal method was in the size range of a few to a few tens nm. As-synthesized and $Co_3O_4$ nanoparticles coated $In_2O_3$ nanowires sensors exhibited responses of 1.96% and 4.57%, respectively for the ethanol gas concentration of 200 ppm at $200^{\circ}C$. The underlying mechanism for the improved responses of $Co_3O_4$ nanoparticles coated $In_2O_3$ nanowires sensors is discussed.

Gas Sensing Characteristics and Doping Effect of $MoO_3$ Thin Films prepared by RF magnetron sputtering (RF magnetron sputtering법으로 제조한 $MoO_3$ 박막의 가스 감지 특성 및 첨가물의 영향)

  • Hwang, Jong-Taek;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.460-463
    • /
    • 2002
  • $MoO_3$ thin films were deposited on electrode and heater screen-printed alumina substrates in $O_2$ atmosphere by RF reactive sputtering using Molybdenum metal target. The deposition was performed at $300^{\circ}C$ with 350W of a forward power in an $Ar-O_2$ atmosphere. The working pressure was maintained at $3{\times}10^{-2}mtorr$ and all deposited films were annealed at $500^{\circ}C$ for 5hours. To investigate gas sensing characteristics of the addition doped $MoO_3$ thin film, Co, Ni and Pt were used as adding dopants. The sensing properties were investigated in tenn of gas concentration under exposure of reducing gases such as $H_2$, $NH_3$ and CO at optimum working temperature. Co-doped $MoO_3$ thin film shows the maximum 46.8% of sensitivity in $NH_3$ and Ni-doped $MoO_3$ thin film exhibits 49.7% of sensitivity in $H_2$.

  • PDF

Gas Sensing Characteristics and Doping Effect of MoO3Thin Films Sensor (박막형 MoO3가스센서의 가스 감지 특성 및 첨가물의 영향)

  • 황종택;장건익;윤대호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.705-710
    • /
    • 2003
  • MoO$_3$thin films were deposited on electrode of alumina substrates in $O_2$atmosphere by RF reactive sputtering using molybdenum metal target. The deposition was performed at 30$0^{\circ}C$ with 350 W of a forward power in an Ar-O$_2$atmosphere. The working pressure was maintained at 3$\times$10$^{-2}$ torr and all deposited films were annealed at 50$0^{\circ}C$ for 5 hours. The surface morphology of films was observed by using a SEM and crystalline phases were analyzed by using a XRD. To investigate gas sensing characteristics of the doped MoO$_3$thin film, Co, Ni and Pt were used as dopants. The sensing properties were investigated in term of gas concentration under exposure of reducing gases such as H$_2$, NH$_3$and CO at optimum working temperature. Co-doped MoO3 thin film shows the maximum 46.8 % of sensitivity in NH$_3$ and Ni-doped MoO$_3$thin film exhibits 49.7 % of sensitivity in H$_2$.