• Title/Summary/Keyword: CNT coating

Search Result 109, Processing Time 0.033 seconds

NO Gas Sensing Properties of ZnO-Carbon Nanotube Composites (산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성)

  • Park, Seong-Yong;Jung, Hoon-Chul;Ahn, Eun-Seong;Nguyen, Le Hung;Kang, Youn-Jin;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.655-659
    • /
    • 2008
  • The NO gas sensing properties of ZnO-carbon nanotube (ZnO-CNT) composites fabricated by the coaxial coating of single-walled CNTs with ZnO were investigated using pulsed laser deposition. Upon examination, the morphology and crystallinity of the ZnO-CNT composites showed that CNTs were uniformly coated with polycrystalline ZnO with a grain size as small as 5-10 nm. Gas sensing measurements clearly indicated a remarkable enhancement of the sensitivity of ZnO-CNT composites for NO gas compared to that of ZnO films while maintaining the strong sensing stability of the composites, properties that CNT-based sensing materials do not have. The enhanced gas sensing properties of the ZnO-CNT composites are attributed to an increase in the surface adsorption area of the ZnO layer via the coating by CNTs of a high surface-to-volume ratio structure. These results suggest that the ZnO-CNT composite is a promising template for novel solid-state semiconducting gas sensors.

Electrochemical Characteristics of Si/SiO2/C Anode Material for Lithium-Ion Battery According to Addition of CNT and CNF Compounds (CNT와 CNF 복합첨가에 따른 Si/SiO2/C 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Yoon, Sang-Hyo;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.35-41
    • /
    • 2021
  • Silicon is a promising next-generation anode material for lithium-ion battery, and it has been studied for commercialization due to the high theoretical capacity. However, it has problems of the volume change during charge-discharge and the poor electrical conductivity. To solve these problems, formation of SiO2 and carbon coating on the surface of silicon crystal were performed to protect the side reaction and enhance the electrical conductivity of silicon. CNT and CNF were also added to mitigate the volume change and increase the conductivity. Physical properties of asprepared samples were analyzed by XRD, SEM, and EDS. Electrochemical characteristics were investigated by electrical conductivity measurement, EIS, CV and cycle performance test. (Si/SiO2/C)+CNT&CNF showed high electrical conductivity and low charge-transfer resistance, and the capacity was 1528 mAh/g at 1st cycle and 1055 mAh/g at 50th cycle with 83% capacity retention.

금속치환법의 공정변수에 따른 탄소나노튜브 표면의 Cu입자 석출 거동

  • Choe, Sun-Yeol;Kim, Jin-Uk;Jo, Gyu-Seop;Kim, Sang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.416-416
    • /
    • 2014
  • 탄소나노튜브(CNTs)의 비강도는 철합금에 비해 30~50배 높으며, 알루미늄 밀도($2.7g/cm^3$)보다 낮은 $1.3{\sim}1.4g/cm^3$의 값을 갖는 고강도 고경량의 탄소소재이다. 이러한 CNT를 금속기지에 복합화 하면 비강도가 매우 우수하고 고경량화 소재의 제조가 가능하다. 하지만, CNT는 반데르발스(Van der waals) 힘에 의해 서로 뭉쳐서 존재하며, 젖음성이 나쁘기 때문에 금속과 부상 분리되는 단점이 있다. 따라서, 이러한 문제점을 보완하기 위하여 무전해 도금법, 전해도금법 등으로 Cu, Ni등을 코팅하여 문제점을 해결하려는 연구가 진행되어 왔지만, 복합소재를 제조하기 위해 필요한 CNT를 대량으로 코팅하기엔 적합하지 않다. 본 연구에서는 CNT표면에 Cu를 대량으로 형성시킬 수 있는 시멘테이션법을 이용하여, 공정조건에 따른 CNT/Cu의 석출되는 형상 및 성분의 변화를 조사하였다.

  • PDF

Formation of β-phase PVDF by Introduction of CNTs in the CNT/PVDF Composite Film and Resulting Improvement of Piezoelectric Performance (CNT의 도입에 의한 β-phase PVDF의 형성과 CNT/PVDF 복합막에서의 압전성능 개선)

  • Lim, Young-Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.712-715
    • /
    • 2016
  • In this paper, we fabricated flexible CNT/PVDF piezoelectric composite device by introducing CNTs (carbon nanotubes) into PVDF (poly-vinylidene fluoride) solution using spray coating technique. Flexible PEDOT:PSS conducting polymer was used as electrodes. We tried to improve the piezoelectric performance from the CNT/PVDF composite film by increasing the portion of the ${\beta}$-phase PVDF in the film. We confirmed the structural conformation of the CNT/PVDF composite film as a function of CNT concentration by using FT-IR (fourier transform infra-red). As increasing CNT concentration, portion of the ${\beta}$-phase PVDF and resulting piezoelectric performance increased in the CNT/PVDF composite film. We found that CNTs introduced were played as seeds for formation of the ${\beta}$-phase PVDF in the CNT/PVDF composite film and resulting improvement of the piezoelectric performance.

Fabrication and Calibration of pH Sensor Using Suspended CNT Nanosheet (부양형 탄소나노튜브 나노시트를 이용한 pH센서의 제작과 보정)

  • Ryu, Hyobong;Choi, WooSeok;An, Taechang;Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.207-211
    • /
    • 2013
  • In this research, the pH sensor was developed using CNT nanosheet with Nafion coating for the advanced medical sensor such as a blood gas analyzer. The CNT nanosheet was formed by dielectrophoresis and water-meniscus between cantilever-type electrodes. Then, the process of the heat annealing and the Nafion coating was conducted for reducing contact resistance and giving proton selectivity respectively. We measured the response of the pH sensor as the electrolyte-gated CNT-nanosheet field effect transistor. The sensor showed a linear current ratio in a similar range of the normal blood pH. A calibration method for decreasing of the response variation among sensors has also been introduced. Coefficient of variance of the pH sensor was decreased by applying the calibration method. A linear relation between the calibrated response of the sensors and pH variance was also obtained. Finally, the pH sensor with a high resolution was fabricated and we verify the feasibility of the sensor by applying the calibration method.

Manufacture of Recycled PET E-Textile by Plasma Surface Modification and CNT Dip-Coating (플라즈마 표면 개질과 CNT 함침공정을 통한 고전도성의 재생PET사 전자섬유)

  • Jun-hyeok Jang;Sang-un Kim;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • This study aims to create a highly conductive E-textile made by recycling PET with a Dip-coating process. PET fiber with hydrophobic properties is characterized by the difficulty in imparting great conductivity when both Virgin and Recycled are made of electronic fibers through a Dip-coating process. To advance the effectiveness of the Dip-coating process, a sample made of recycled PET was surface modified for 50 w 5 minutes and 10 minutes employing a Covance-2mprfq model from FEMTO SCIENCE. After that, the sample was immersed in an SWCNT dispersion (.1 wt%, Carbon Co., Ltd.) for 5 minutes, and then dip coating was conducted to allow the solution to permeate well into the sample through a padder (DAELIM lab). After the procedure was completed, the resistance measurement was measured with a multimeter at both ends and then accurately remeasured with a wider electrode. As a result of this contemplation, it was affirmed that great conductivity might be given through an impregnation process through the plasma surface modification. When the surface modification was performed for 10 minutes, the resistance was reduced by up to 2.880 times. Dependent on the results of this research, E-fibers employed in the smart wearable sector can also be made of recycled materials, improving smart wearable products that can save oil resources and reduce carbon emissions.

Development of Solution-based Carbon Nanotube and Silver Nanowire Coating Technology using Silk Printing Technique (실크 스크린 프린팅 기법을 적용한 용액 기반의 탄소나노튜브와 은 나노 와이어 코팅 기술 개발)

  • Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.9
    • /
    • pp.33-39
    • /
    • 2023
  • Nano-sized materials can be coated on various substrates, and since this material is transparent and conductive, it can be used as a transparent electrode for electronic devices or an electrode for power supply. In this study, CNT and Ag nanowires were repeatedly coated using the silk screen technique, and samples formed up to 5 times were fabricated, and their optical and electrical properties were measured and analyzed. It was confirmed that marks were formed on the surface of the silkscreen-coated sample according to the coating direction, and the trend of transmittance and surface resistance according to the number of times of coating was investigated. As the number of coatings increased, transmittance and surface resistance tended to decrease. In particular, in the case of transmittance, the range of change was large in the samples coated 2 and 5 times. These changes were confirmed by the Ag nanowire coating. In addition, starting from 700 nm, the previous wavelength region increased according to the wavelength, while the above showed a tendency to decrease. The surface resistance was lowered from 9Ω/cm2 when coating once to 0.856Ω/cm2 when coating five times. It was found that the resistance value was affected by Ag similarly to the permeability. In the future, it is necessary to realize a desired transparent electrode through Ag concentration and coating of Ag nanowires with other methods and fusion with highly transparent CNT to apply to electronic devices.

Preparation, Morphology and Electrical Conductivity of Polystyrene/Polydopamine- Carbon Nanotube Microcellular Foams via High Internal Phase Emulsion Polymerization (고내상 에멀젼 중합에 의한 폴리스티렌/폴리도파민-탄소나노튜브 미세기공 발포체의 제조, 모폴로지 및 전기 전도도)

  • Kim, Haseung;Na, Hyo Yeol;Lee, Jong Heon;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.293-299
    • /
    • 2015
  • Conductive microcellular foams consisted of polystrene (PS) and polydopamine-coated carbon nanotube (PDA-CNT) were prepared via high internal phase emulsion (HIPE) polymerization and their morphology and electrical conductivity were investigated. CNT as a conductive nanofiller was modified to PDA-CNT by coating with hydrophilic PDA on the surface of CNT to increase aqueous phase dispersion and emulsion stability. It was possible to prepare the HIPEs having higher PDA-CNT content and the resultant foams having improved conductivity due to its good dispersion. The foams showed the morphology of interconnected cell structure. As PDA-CNT content increased, yield stress and storage modulus increased and cell size reduced. The PDA-CNT content showing electrical percolation threshold was ca. 0.58 wt% and the conductivity at PDA-CNT content of 5 wt% was increased to $10^{-3}S/m$.

Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex (폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조)

  • Nguyen, Linh Thi My;Li, Nan;Yoon, Hyon Hee
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.99-103
    • /
    • 2013
  • An emzymatic bioanode for a glucose/oxygen biofuel cell was prepared by the sequential coating of carbon nanotube (CNT), charge transfer complex (CTC) based on tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF), glucose oxidase (GOx), and polyion complex (mixture of poly-L-lysine hydrobromide and poly (sodium 4-styrenesulfonate)) on a glassy carbon electrode. A biocathode was also prepared by the sequential coating of CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and polyion complex. The effect of CNT and CTC on the electrochemical performance was investigated. The biofuel cell exhibited a promising performance with maximum power densities of 3.6, 10.1, and $46.5{\mu}W/cm^2$ at 5, 20, and 200 mM of glucose concentration, respectively. The result indicates that the biofuel cell architecture prepared in this study can be used in the development of biofuel cells and biosensors.

Hydrogen Bonding-Driven Assembling of Thin Multiwalled Carbon Nanotubes (수소결합에 의한 얇은 다중벽 탄소나노튜브의 자기조립)

  • Han, Joong-Tark;Kim, Sun-Young;Woo, Jong-Seok;Lee, Gun-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.426-427
    • /
    • 2007
  • Here we describe the formation of a self-assembled film of thin multiwalled carbon Nanotubes(t-MWNT) modified with hydroxy groups through hydrogen peroxide treatment. Morphologies of t-MWNT films could be controlled by the various coating method, such as filtering, drop casting, spraying method, etc. The results show that on densification of the CNT suspension during drying, multiple hydroxy group-modified MWNTs can be self-assembled through strong surface hydrogen bond interaction while MWNTs usually exist an entangled state in the film. The interaction between t-MWNT was illustrated from Raman spectrum of spray coated films.

  • PDF