Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex

폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조

  • Nguyen, Linh Thi My (Department of Chemical and Biological Engineering, Gachon University) ;
  • Li, Nan (Department of Chemical and Biological Engineering, Gachon University) ;
  • Yoon, Hyon Hee (Department of Chemical and Biological Engineering, Gachon University)
  • Published : 2013.02.10

Abstract

An emzymatic bioanode for a glucose/oxygen biofuel cell was prepared by the sequential coating of carbon nanotube (CNT), charge transfer complex (CTC) based on tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF), glucose oxidase (GOx), and polyion complex (mixture of poly-L-lysine hydrobromide and poly (sodium 4-styrenesulfonate)) on a glassy carbon electrode. A biocathode was also prepared by the sequential coating of CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and polyion complex. The effect of CNT and CTC on the electrochemical performance was investigated. The biofuel cell exhibited a promising performance with maximum power densities of 3.6, 10.1, and $46.5{\mu}W/cm^2$ at 5, 20, and 200 mM of glucose concentration, respectively. The result indicates that the biofuel cell architecture prepared in this study can be used in the development of biofuel cells and biosensors.

유리화탄소전극 위에 탄소나노튜브(CNT), 전하전달체(CTC), 글루코스 산화효소(GOx), 폴리이온복합체(PIC, poly-L-lysine hydrobromiderhk과 poly(sodium 4-styrenesulfonate) 혼합물)를 순차적으로 도포하여 글루코스/산소 바이오전지용 효소전극을 제조하였다. 또한, CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 그리고 PIC 등의 층으로 제조한 전극을 바이오캐쏘드로 사용하여 바이오전지를 제조하였다. CNT와 CTC가 전극의 성능에 미치는 영향을 조사하였으며, 글루코스농도 5, 20, 200 mM에서 각각 3.6, 10.1, $46.5{\mu}W/cm^2$의 최대전력밀도를 나타내었으며, 본 연구에서 제시한 전극이 바이오전지 및 바이오센서의 개발에 활용될 수 있다는 것을 보여주었다.

Keywords

References

  1. R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, Biosens. Bioelectron., 21, 2015 (2006). https://doi.org/10.1016/j.bios.2006.01.030
  2. I. Ivanov, T. Vidakovic-Koch, and K. Sundmacher, Energies, 3, 803 (2010). https://doi.org/10.3390/en3040803
  3. F. Davis and S. P. J. Higson, Biosens. Bioelectron., 22, 1224 (2007). https://doi.org/10.1016/j.bios.2006.04.029
  4. Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, and K. Kano, Phys. Chem. Chem. Phys., 9, 1793 (2007). https://doi.org/10.1039/b617650j
  5. L. Stoica, N. Dimcheva, Y. Ackermann, K. Karnicka, D. A. Guschin, P. J. Kulesza, J. Rogalski, D. Haltrich, R. Ludwig, L. Gorton, and W. Schuhmann, Fuel Cells, 9, 53 (2009). https://doi.org/10.1002/fuce.200800033
  6. N. L. Akers, C. M. Moore, and S. D. Minteer, Electrochim. Acta, 50, 2521 (2005). https://doi.org/10.1016/j.electacta.2004.10.080
  7. R. L. Arechederra and S. D. Minteer, Fuel Cells, 9, 63 (2009). https://doi.org/10.1002/fuce.200800029
  8. S. C. Barton, J. Gallaway, and P. Atanassov, Chem. Rev., 104, 4867 (2004). https://doi.org/10.1021/cr020719k
  9. M. Togo, A. Takamura, T. Asai, H. Kaji, and M. Nishizawa, J. Power Sources, 178, 53 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.052
  10. A. M. Kannan, V. Renugopalakrishnan, S. Filipek, P. Li, G. F. Audette, and L. Munukutla, J. Nanosci. Nanotechnol., 9, 1665 (2009). https://doi.org/10.1166/jnn.2009.SI03
  11. S. C. Barton, J. Gallaway, and P. Atanassov, Chem. Rev., 104, 4867 (2004). https://doi.org/10.1021/cr020719k
  12. L. Fernandez and H. Carrero, Electrochim. Acta, 50, 1233 (2005). https://doi.org/10.1016/j.electacta.2004.08.016
  13. F. Li, C. Tang, S. Liu, and G. Ma. Electrochim. Acta, 55, 838 (2010). https://doi.org/10.1016/j.electacta.2009.09.049
  14. R. Antiochia and L. Gorton, Biosens. Bioelectron., 22, 2611 (2007). https://doi.org/10.1016/j.bios.2006.10.023
  15. K. T. Lau, S. A. L. de Fortescu, L. J. Murphy, and J. M. Slater, Electroanal., 15, 975 (2003). https://doi.org/10.1002/elan.200390118
  16. G. F. Khan, M. Ohwa, and W. Wernet, Anal. Chem., 68, 939 (1996).
  17. I. Ivanov, T. Vidakovic-Koch, and K. Sundmacher, J. Power Sources, 196, 9260 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.060
  18. P. Du, S. N. Liu, P. Wu, and C. X. Cai, Electrochim. Acta, 52, 6534 (2007). https://doi.org/10.1016/j.electacta.2007.04.092
  19. M. Holzinger, A. L. Goff, and S. Cosnier, Electrochim. Acta, 82, 179 (2012). https://doi.org/10.1016/j.electacta.2011.12.135
  20. J. B. Kim, H. Jia, and P. Wang, Biotechnol. Adv., 24, 296 (2006). https://doi.org/10.1016/j.biotechadv.2005.11.006
  21. S. Komaba, T. Mitsuhashi, and S. Shiraishi, Electrochemistry, 76, 55 (2008). https://doi.org/10.5796/electrochemistry.76.55
  22. S. Yabuki, F. Mizutani, and Y. Hirata, J. Electroanal. Chem., 468, 117 (1999). https://doi.org/10.1016/S0022-0728(99)00088-1
  23. T. Osaka, S. Komaba, A. Amano, Y. Fujino, and H. Mor, Sens. Actuators B, 65, 58 (2000) https://doi.org/10.1016/S0925-4005(99)00423-2
  24. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2 nd ed., John Wiley: New York (2001).