• 제목/요약/키워드: CNN deep learning methods

검색결과 273건 처리시간 0.021초

Deep Learning Based Rumor Detection for Arabic Micro-Text

  • Alharbi, Shada;Alyoubi, Khaled;Alotaibi, Fahd
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.73-80
    • /
    • 2021
  • Nowadays microblogs have become the most popular platforms to obtain and spread information. Twitter is one of the most used platforms to share everyday life event. However, rumors and misinformation on Arabic social media platforms has become pervasive which can create inestimable harm to society. Therefore, it is imperative to tackle and study this issue to distinguish the verified information from the unverified ones. There is an increasing interest in rumor detection on microblogs recently, however, it is mostly applied on English language while the work on Arabic language is still ongoing research topic and need more efforts. In this paper, we propose a combined Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to detect rumors on Twitter dataset. Various experiments were conducted to choose the best hyper-parameters tuning to achieve the best results. Moreover, different neural network models are used to evaluate performance and compare results. Experiments show that the CNN-LSTM model achieved the best accuracy 0.95 and an F1-score of 0.94 which outperform the state-of-the-art methods.

Attention-based CNN-BiGRU for Bengali Music Emotion Classification

  • Subhasish Ghosh;Omar Faruk Riad
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.47-54
    • /
    • 2023
  • For Bengali music emotion classification, deep learning models, particularly CNN and RNN are frequently used. But previous researches had the flaws of low accuracy and overfitting problem. In this research, attention-based Conv1D and BiGRU model is designed for music emotion classification and comparative experimentation shows that the proposed model is classifying emotions more accurate. We have proposed a Conv1D and Bi-GRU with the attention-based model for emotion classification of our Bengali music dataset. The model integrates attention-based. Wav preprocessing makes use of MFCCs. To reduce the dimensionality of the feature space, contextual features were extracted from two Conv1D layers. In order to solve the overfitting problems, dropouts are utilized. Two bidirectional GRUs networks are used to update previous and future emotion representation of the output from the Conv1D layers. Two BiGRU layers are conntected to an attention mechanism to give various MFCC feature vectors more attention. Moreover, the attention mechanism has increased the accuracy of the proposed classification model. The vector is finally classified into four emotion classes: Angry, Happy, Relax, Sad; using a dense, fully connected layer with softmax activation. The proposed Conv1D+BiGRU+Attention model is efficient at classifying emotions in the Bengali music dataset than baseline methods. For our Bengali music dataset, the performance of our proposed model is 95%.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

Wavelet 기반의 영상 디테일 향상 잡음 제거 네트워크 (WDENet: Wavelet-based Detail Enhanced Image Denoising Network)

  • 정군;위승우;정제창
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.725-737
    • /
    • 2021
  • 현재 카메라 성능이 점점 발전해 왔지만 카메라로부터 얻은 디지털 영상에는 잡음 (Noise)이 존재하고 이는 높은 해상도의 영상을 획득하는 데 있어서 방해요소로 작용한다. 전통적으로 잡음을 제거하기 위하여 필터링 방법을 사용해 왔고 최근 딥 러닝 기법의 하나인 합성곱 신경망 (Convolutional Neural Network)은 영상 잡음 제거 분야에서 전통적인 기법보다 좋은 성능을 나타내고 있어 많은 연구가 진행되고 있다. 하지만 합성곱 신경망으로 학습하는 과정에서 영상 내 디테일한 부분이 손실될 수 있는 문제점이 있다. 본 논문에서는 웨이블릿 변환 (Wavelet Transform)을 기반으로 영상 내 디테일 정보도 같이 학습하여 영상 디테일을 향상하는 잡음 제거 합성곱 신경망 네트워크를 제안한다. 제안하는 네트워크는 디테일 향상 서브 네트워크 (Detail Enhancement Subnetwork)와 영상 잡음 추출 서브 네트워크 (Noise Extraction Subnetwork)를 이용하게 된다. 실험은 가우시안 잡음과 실제 카메라 잡음을 통해 진행했고 제안하는 방법은 기존 알고리듬보다 디테일 손실 문제를 효과적으로 해결할 수 있었고 객관적 품질 평가와 주관적 품질 비교에서 모두 우수한 결과가 나온 것을 확인하였다.

딥러닝 기반 비디오 캡셔닝의 연구동향 분석 (Analysis of Research Trends in Deep Learning-Based Video Captioning)

  • 려치;이은주;김영수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제13권1호
    • /
    • pp.35-49
    • /
    • 2024
  • 컴퓨터 비전과 자연어 처리의 융합의 중요한 결과로서 비디오 캡셔닝은 인공지능 분야의 핵심 연구 방향이다. 이 기술은 비디오 콘텐츠의 자동이해와 언어 표현을 가능하게 함으로써, 컴퓨터가 비디오의 시각적 정보를 텍스트 형태로 변환한다. 본 논문에서는 딥러닝 기반 비디오 캡셔닝의 연구 동향을 초기 분석하여 CNN-RNN 기반 모델, RNN-RNN 기반 모델, Multimodal 기반 모델, 그리고 Transformer 기반 모델이라는 네 가지 주요 범주로 나누어 각각의 비디오 캡셔닝 모델의 개념과 특징 그리고 장단점을 논하였다. 그리고 이 논문은 비디오 캡셔닝 분야에서 일반적으로 자주 사용되는 데이터 집합과 성능 평가방안을 나열하였다. 데이터 세트는 다양한 도메인과 시나리오를 포괄하여 비디오 캡션 모델의 훈련 및 검증을 위한 광범위한 리소스를 제공한다. 모델 성능 평가방안에서는 주요한 평가 지표를 언급하며, 모델의 성능을 다양한 각도에서 평가할 수 있도록 연구자들에게 실질적인 참조를 제공한다. 마지막으로 비디오 캡셔닝에 대한 향후 연구과제로서 실제 응용 프로그램에서의 복잡성을 증가시키는 시간 일관성 유지 및 동적 장면의 정확한 서술과 같이 지속해서 개선해야 할 주요 도전과제와 시간 관계 모델링 및 다중 모달 데이터 통합과 같이 새롭게 연구되어야 하는 과제를 제시하였다.

GAN-based shadow removal using context information

  • Yoon, Hee-jin;Kim, Kang-jik;Chun, Jun-chul
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.29-36
    • /
    • 2019
  • When dealing with outdoor images in a variety of computer vision applications, the presence of shadow degrades performance. In order to understand the information occluded by shadow, it is essential to remove the shadow. To solve this problem, in many studies, involves a two-step process of shadow detection and removal. However, the field of shadow detection based on CNN has greatly improved, but the field of shadow removal has been difficult because it needs to be restored after removing the shadow. In this paper, it is assumed that shadow is detected, and shadow-less image is generated by using original image and shadow mask. In previous methods, based on CGAN, the image created by the generator was learned from only the aspect of the image patch in the adversarial learning through the discriminator. In the contrast, we propose a novel method using a discriminator that judges both the whole image and the local patch at the same time. We not only use the residual generator to produce high quality images, but we also use joint loss, which combines reconstruction loss and GAN loss for training stability. To evaluate our approach, we used an ISTD datasets consisting of a single image. The images generated by our approach show sharp and restored detailed information compared to previous methods.

Empirical Investigations to Plant Leaf Disease Detection Based on Convolutional Neural Network

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제23권6호
    • /
    • pp.115-120
    • /
    • 2023
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.

Convolutional Neural Network Based Plant Leaf Disease Detection

  • K. Anitha;M.Srinivasa Rao
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.107-112
    • /
    • 2024
  • Plant leaf diseases and destructive insects are major challenges that affect the agriculture production of the country. Accurate and fast prediction of leaf diseases in crops could help to build-up a suitable treatment technique while considerably reducing the economic and crop losses. In this paper, Convolutional Neural Network based model is proposed to detect leaf diseases of a plant in an efficient manner. Convolutional Neural Network (CNN) is the key technique in Deep learning mainly used for object identification. This model includes an image classifier which is built using machine learning concepts. Tensor Flow runs in the backend and Python programming is used in this model. Previous methods are based on various image processing techniques which are implemented in MATLAB. These methods lack the flexibility of providing good level of accuracy. The proposed system can effectively identify different types of diseases with its ability to deal with complex scenarios from a plant's area. Predictor model is used to precise the disease and showcase the accurate problem which helps in enhancing the noble employment of the farmers. Experimental results indicate that an accuracy of around 93% can be achieved using this model on a prepared Data Set.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.55-67
    • /
    • 2022
  • 센서 데이터를 활용하여 설비의 이상 진단이 가능해졌다. 하지만 설비 이상에 대한 원인 분석은 미비한 실정이다. 본 연구에서는 센서 기반 시계열 데이터 분류 모델을 위한 해석가능한 합성곱 신경망 프레임워크를 제안한다. 연구에서 사용된 센서 기반 시계열 데이터는 실제 차량에 부착된 센서를 통해 수집되었고, 반도체의 웨이퍼 데이터는 공정 과정에서 수집되었다. 추가로 실제 기계 설비에서 수집된 주기 신호 데이터를 이용 하였으며, 충분한 학습을 위해 Data augmentation 방법론인 Scaling과 Jittering을 적용하였다. 또한, 본 연구에서는 3가지 합성곱 신경망 기반 모델들을 제안하고 각각의 성능을 비교하였다. 본 연구에서는 ResNet에 Jittering을 적용한 결과 정확도 95%, F1 점수 95%로 가장 뛰어난 성능을 보였으며, 기존 연구 대비 3%의 성능 향상을 보였다. 더 나아가 결과의 해석을 위한 XAI 방법론으로 Class Activation Map과 Layer Visualization을 제안하였으며, 센서 데이터 분류에 중요 영향을 끼치는 시계열 구간을 시각적으로 확인하였다.

딥 러닝 분류 모델을 이용한 직하방과 경사각 영상 기반의 벼 출수기 판별 (Estimation of Rice Heading Date of Paddy Rice from Slanted and Top-view Images Using Deep Learning Classification Model)

  • 박혁진;상완규;장성율;권동원;임우진;이지현;정남진;조정일
    • 한국농림기상학회지
    • /
    • 제25권4호
    • /
    • pp.337-345
    • /
    • 2023
  • 벼의 출수기를 추정하는 것은 농업생산성과 관련된 중요한 과정 중 하나이지만 세계적인 이상기후의 증가로 벼의 출수기를 추정하는 것이 어려워지고 있다. 본 연구에서는 CNN 분류모델을 사용하여 다양한 영상데이터에서 벼의 출수기를 추정하려고 시도하였다. 드론과 타워형 영상관측장치 그리고 일반 RGB 카메라로 촬영된 직하방과 경사각 영상을 수집하였다. 수집한 영상은 CNN 모델의 입력데이터로 사용하기 위해서 전처리를 진행하였고, 사용된 CNN 아키텍처는 이미지 분류 모델에서 일반적으로 사용되는 ResNet50, InceptionV3 그리고 VGG19 를 사용하였다. 각각의 아키텍처는 모델의 종류, 영상의 유형과 관계없이 0.98 이상의 정확도를 나타내었다. 또한 CNN 분류 모델이 영상의 어떤 특징을 보고 분류하였는지 시각적으로 확인하기 위해서 Grad-CAM 을 사용하였다. Grad-CAM 결과 CNN 분류 모델은 벼의 출수를 이삭의 형태에 높은 가중치를 두어 분류 하는 것을 확인하였다. 다음으로 작성된 모델이 실제 논 포장 모니터링 이미지에서 벼의 출수기를 정확하게 추정하는지 확인하였다. 각각 다른 지역 4 개의 벼 포장에서 벼의 출수기를 약 하루정도의 차이로 추정하는 것을 확인하였다. 이 방법을 통해서 다양한 논 포장의 모니터링 이미지를 활용하여 자동적이고 정량적으로 벼의 출수기를 추정 할 수 있다고 판단된다.