• Title/Summary/Keyword: CMT welding

Search Result 13, Processing Time 0.027 seconds

Research on BLDC motor control for CMT welding technique (자동차용 CMT 용접을 위한 BLDC 모터 제어 기술 연구)

  • Kang, Dong-Hun;Heo, Gyeong-Hyeon;Choi, Seung-Won;Lee, Jun-Young;Lee, Il-Oun;Park, Jun-Sung;Lee, Jae-Min;Byeon, Dong-Seop;Lee, Sang-Oh
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.388-389
    • /
    • 2019
  • 초박판 용접 기술인 CMT (Cold Metal Transfer) 용접을 위한 모터의 고정밀 정역동작 알고리즘 연구개발 결과를 본 논문에서 발표한다. CMT 용접 기술 구현을 위해 50W급 고정밀 속도 및 토크 제어가 가능한 맥슨모터의 EC-i40(BLDC 모터)을 사용하였고, DSP(TMS320F28069)와 모터 드라이버 IC(A3930)를 적용한 전용 제어 보드를 제작하여 CMT 동작 성능을 검증하였다. 실제 상용화되고 있는 용접전원장치(HF400R)와 본 논문에서 발표하는 CMT 기술을 연동하여 용접을 수행하면서 그 우수성을 확인하였다.

  • PDF

Characterization of Cold Metal Transfer Welding Coated Steel (도금 강판 CMT 용접부위의 재료특성평가)

  • Song, Hyun Soo;Choi, Bo Sung;Yun, Jondo;Park, Seung Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.891-896
    • /
    • 2015
  • In order to protect the environment, using light material is becoming more and more attractive within the automobile industry. Aluminum alloys are the best and lightest metallic materials used in the automotive, electron, and aerospace industries. Al alloy and SGARC were joined by cold metal transfer (CMT) welding, using AlSiMn4 as a filler. Results showed that dissimilar metals from the Al 6000 series/SGARC could be successfully joined by CMT under proper processing parameters. The micro-hardness value of 125Hv was obtained at an interface.

A Study on Processing of Monolithic Rack Housing for Modular Steering Gear [II] - Processing Characteristics of Monolithic Rack Housing - (Steering Gear 모듈화를 위한 일체형 Rack Housing의 공정에 관한 연구 [II] - 일체형 Rack Housing의 공정특성 -)

  • Kim, Jong-Do;Lee, Chang-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.288-294
    • /
    • 2009
  • The purpose of this study is manufacturing of monolithic housing for modularization of steering gear. Monolithic housing is difficult to weld with only rotation and linear motion. It is for this reason that housing of joining parts have a slope of 76.3 degrees. For this reason, welding trajectory was measured by the cooperative controled robot system, and then allowing for measured results, we developed the dedicated system. The developed system can be welded by using only 3 axises in contrast with robot system using 8 axises in housing welding. In addition, we applied CMT and laser welding device to dedicated system and as a result of experiment, sound bead and excellent roundness could be obtained.

High-efficiency repair welding technology for marine engine components (선박엔진 부품의 고능률 보수용접기술)

  • Kim, Young-Sik;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Of the marine engine components, the piston crown and exhaust valve are repaired most frequently. These works are conducted through conventional welding processes such as GTAW or SAW, domestically in marine engine repair factories. New high-efficiency welding or overlay processes such as tandem SAW, tandem MAG, hybrid TIG-MIG welding, pulsed-GMAW, CMT welding, and super TIG welding have been developed recently. Moreover, the plasma transfered arc (PTA) process is an efficient spray method for overlaying on the exhaust valve. In this review paper, the new high-efficiency repair welding methods are introduced for marine engine components. The problems due to repair welding for marine engine components are also presented.

Technology on Arc Welding Machine of Aluminum by Digital Control (디지털 제어를 이용한 알루미늄 아크 용접기의 기술현황)

  • Lee, Chang-Je;Kim, Yu-Chan;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.26-32
    • /
    • 2013
  • Recently, welding technology of nonferrous metals which were difficult to implement by arc welder has become available through digitalization of arc welding machine. Among them, the welding quality improvement of aluminum welding is very noticeable. These results increase the arc stability by controlling arc current and voltage waveform precisely, and control wire feed speed by synchronizing with arc current which the feed rate of filler wire is controlled by a precise motor control of servomotor and not by a simple constant speed feeding. Not only through the hardware digitalization of arc welding machine but also through advance of software of arc welding, it became possible to implement a certain level of welding quality by a simple operation. These led to CMT welding process implementation which requires low heat input than current arc welding and highly increased the applicability of the aluminum welding.

Amount of Spatter in Arc Welding for High-Strength Galvanized Steel According to Shielding Gas Composition (고강도 아연도금 강판의 아크 용접시 보호가스의 비율에 따른 스패터량에 대한 고찰)

  • Jeong, Young-Cheol;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • The need for high-strength galvanized steel has recently increased because of the increased number of car consumers who want improved efficiency and exterior quality. High-strength galvanized steel with high corrosion resistance improves the durability of products and exterior quality. Furthermore, the gilt of zinc does not come off during machining because of the fine adhesive property of zinc. When these are welded, zinc has a lower melting temperature than iron, so zinc is more quickly vaporized than iron. Vaporized zinc can stick to electrodes, which increases spatter in welding transportation. Created spatter can enter the molten pool and develop into inner defects or blowholes and pits. Scattered spatter sticks to the product, which leads to the secondary cost of spatter removal. Therefore, in this study, comparisons of amounts of spatter generated are conducted according to the composition of shielding gas in the MIG and CMT processes to find optimal welding parameters.

Study on the Optimization Field Welding Conditions of Low Heat-Input Pluse MIG Welding Process for 5052 Aluminum Alloy Sheets (Al 5052 합금의 저입열 Pulse MIG 최적 현장 용접조건 산정에 관한 실험적 연구)

  • Kim, Jae-Seong;Lee, Young-Gi;An, Ju-Sun;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.80-84
    • /
    • 2011
  • The weight reduction of the transportations has become an important technical subject Al and Al alloys, especially Al 5052 alloys have been being applied as door materials for automobile. One of the most widely known car weight-reduction methods is to use light and corrosion-resistant aluminum alloys. However, because of high electrical and thermal conductivity and a low melting point, it is difficult to obtain good weld quality when working with the aluminum alloys. Also, Pulse MIG welding is the typical aluminum welding process, but it is difficult to apply to the thin plate, because of melt-through and humping-bead. In order to enhance weld quality, welding parameters should be considered in optimizing the welding process. In this experiment, Al 5052 sheets were used as specimens, and these materials were welded by adopting new Cold Metal Transfer (CMT) pulse process. The proper welding conditions such as welding current, welding speed, torch angle $50^{\circ}$ and gap 0~1mm are determined by tensile test and bead shape. Through this study, range of welding current are confirmed from 100A to 120A. And, the range of welding speed is confirmed from 1.2m/min to 1.5m/min.

A study on the characteristics of vertical welding positions using GA steel sheet in the $CO_2$ welding (GA 강판에 대한 $CO_2$ 수직용접자세의 특성에 관한 연구)

  • Kim, Jae-Seong;Jo, Yong-Jun;Lee, Gyeong-Cheol;Lee, Bo-Yeong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.36-38
    • /
    • 2007
  • The instability of the arc in the $CO_2$ arc welding affects the quality of the weld in the automotive industry. This paper evaluates the effects of the arc stability in $CO_2$ arc welding with respect to vertical welding positions. In this experiment, galva-annealed steel sheets(CA) were used as specimens, and these materials were welded by adopting new Cold Metal Transfer (CMT) process. For each sample, fillet joint welding trials were carried out using the same conditions. Each part of welding joints was welded with vertical-up, vertical-down position at $45^{\circ},\;90^{\circ}\;and\;135^{\circ}$ degrees. A high speed camera and a welding signal monitoring system were used for monitoring fluid-flow phenomena in weld pools and frequency measurements, respectively. Through this study, the welding position were found to be key factors mainly to influence the arc stability in $CO_2$ welding moreover and that the arc stability in the vertical-up welding position was observed to be more stable than the vertical-down welding position below $90^{\circ}$.

  • PDF