• Title/Summary/Keyword: CMP slurry

Search Result 364, Processing Time 0.032 seconds

Optimization of Electrolytes on Cn ECMP Process (Cu ECMP 공정에 사용디는 전해액의 최적화)

  • Kwon, Tae-Young;Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.78-78
    • /
    • 2007
  • In semiconductor devices, Cu has been used for the formation of multilevel metal interconnects by the damascene technique. Also lower dielectric constant materials is needed for the below 65 nm technology node. However, the low-k materials has porous structure and they can be easily damaged by high down pressure during conventional CMP. Also, Cu surface are vulnerable to have surface scratches by abrasive particles in CMP slurry. In order to overcome these technical difficulties in CMP, electro-chemical mechanical planarization (ECMP) has been introduced. ECMP uses abrasive free electrolyte, soft pad and low down-force. Especially, electrolyte is an important process factor in ECMP. The purpose of this study was to characterize KOH and $KNO_3$ based electrolytes on electro-chemical mechanical. planarization. Also, the effect of additives such as an organic acid and oxidizer on ECMP behavior was investigated. The removal rate and static etch rate were measured to evaluate the effect of electro chemical reaction.

  • PDF

Signal Analysis of Motor Current for End Point Detection in the Chemical Mechanical Polishing of Shallow Trench Isolation with Reverse Moat Structure

  • Park, Chang-Jun;Kim, Sang-Yong;Seo, Yong-Jin
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.262-267
    • /
    • 2002
  • In this paper, we first studied the factors affecting the motor current (MC) signal, which was strongly affected by the systematic hardware noises depending on polishing such as pad conditioning and arm oscillation of platen and recipe, head motor. Next, we studied the end point detection (EPD) for the chemical mechanical polishing (CMP) process of shallow trench isolation (STI) with reverse moat structure. The MC signal showed a high amplitude peak in the fore part caused by the reverse meal. pattern. We also found that the EP could not be detected properly and reproducibly due to the pad conditioning effect, especially when conventional low selectivity slurry was used. Even when there was no pad conditioning effect, the EPD method could not be applied, since the measured end points were always the same due to the characteristics of the reverse moat structure with an open nitride layer.

Development of Chemical Mechanical Polishing machine by Conical Drum (원뿔형 드럼을 이용한 화학기계적 연마기의 개발)

  • 서헌덕
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.525-529
    • /
    • 1999
  • A cone shape drum polisher was developed to make up for the demerits of conventional CMP apparatus. The developed equipment has several superiorities. First of all, it can achieve uniform velocity profile on all the contact line because of its shape and easy to control the amount of slurry at the position of use. The whole area of wafer surface is exposed to the visual area except the contact line between wafer and drum, hence we can detect polishing end point more easily than any other polishing equipments. Also it has additional merits such as small foot print and polishing load. Polishing characteristics were investigated by developed equipment.

  • PDF

Zeta-potential in CMP process of sapphire wafer on poly-urethane pad (폴리우레탄 패드를 이용한 기계-화학 연마공정에서 파이어 웨이퍼 표면 전위)

  • Hwang, Sung-Won;Shin, Gwi-Su;Kim, Keun-Joo;Suh, Nam-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1816-1821
    • /
    • 2003
  • The sapphire wafer for blue light emitting device was manufactured by the implementation of the chemical and mechanical polishing process. The surface polishing of crystalline sapphire wafer was characterized by zeta potential measurement. The reduction process with the alkali slurry provides the surface chemical reaction with sapphire atoms. The poly-urethane pad also provides the frictional force to take out the chemically-reacted surface layers. The surface roughness was measured by the atomic force microscope and the crystalline quality was characterized by the double crystal X -ray diffraction analysis.

  • PDF

[Retraction]Size measurement and characterization of ceria nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Kim, Kihyun;Choi, Seong-Ho;Lee, Seungho;Kim, Woonjung
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.173-184
    • /
    • 2019
  • As the size of semiconductors becomes smaller, it is necessary to perform high precision polishing of nanoscale. Ceria, which is generally used as an abrasive, is widely used because of its uniform quality, but its stability is not high because it has a high molecular weight and causes agglomeration and rapid precipitation. Such agglomeration and precipitation causes scratches in the polishing process. Therefore, it is important to accurately analyze the size distribution of ceria particles. In this study, a study was conducted to select dispersants useful for preventing coagulation and sedimentation of ceria. First, a dispersant was synthesized and a ceria slurry was prepared. The defoamer selection experiment was performed in order to remove the air bubbles which may occur in the production of ceria slurry. Dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used to determine the size distribution of ceria particles in the slurry. AsFlFFF is a technique for separating nanoparticles based on sequential elution of samples as in chromatography, and is a useful technique for determining the particle size distribution of nanoparticle samples. AsFlFFF was able to confirm the presence of a little quantities of large particles in the vicinity of 300 nm, which DLS can not detect, besides the main distribution in the range of 60-80 nm. AsFlFFF showed better accuracy and precision than DLS for particle size analysis of a little quantities of large particles such as ceria slurry treated in this study.

A Study on ILD(Interlayer Dielectric) Planarization of Wafer by DHF (DHF를 적용한 웨이퍼의 층간 절연막 평탄화에 관한 연구)

  • Kim, Do-Youne;Kim, Hyoung-Jae;Jeong, Hae-Do;Lee, Eun-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.149-158
    • /
    • 2002
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increases in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. However there are several defects in CMF, such as micro-scratches, abrasive contaminations and non-uniformity of polished wafer edges. Wet etching process including spin-etching can eliminate the defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(Interlayer-Dielectric) was removed by CMP and wet etching process using DHF(Diluted HF) in order to investigate the possibility of planrization by wet etching mechanism. In the thin film wafer, the results were evaluated from the viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And the pattern step heights were also compared for the purpose of planarity characterization of the patterned wafer. Moreover, Chemical polishing process which is the wet etching process with mechanical energy was introduced and evaluated for examining the characteristics of planarization.