We designed and implemented the RFIC(RF front-end IC) for DTV(Digital TV) tuner. The DTV tuner RF front-end consists of low noise IF amplifier fur the amplification of 900 MHz RF signal and down conversion mixer for the RF signal to 44MHz IF conversion. The RFIC is implemented on ETRI 0.8u high resistive (2㎘ -cm) and evaluated by on wafer, packaged chip test. The gain and IIP3 of IF amplifier are 15㏈ and -6.6㏈m respectively. For the down conversion mixer gain and IIP3 are 13㏈ and -6.5㏈m. Operating voltage of the IF amplifier and the down mixer is 5V, current consumption are 13㎃ and 26㎃ respectively.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.46
no.6
/
pp.52-57
/
2009
This paper presents a low-noise low-dropout linear regulator that is suitable for on-chip integration with RF transceiver ICs. In the bandgap reference, a stacked diode structure is adopted for saving silicon area as well as maintaining low output noise characteristic. Theoretical analysis for supporting the approach is also described. The linear regulator is fabricated in $0.18{\mu}m$ CMOS process. It operates with an input voltage range of 2.2 V - 5 V and provide the output voltage of 1.8 V and the output current up to 90 mA. The measured line and load regulation is 0.04%/V and 0.46%, respectively. The output noise voltage is measured to be 479 nV/$^\surd{Hz}$ and 186 nV/$^\surd{Hz}$ from 100 Hz and 1 kHz offset, respectively.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.46
no.1
/
pp.94-101
/
2009
This paper presents scalable modeling of spiral inductors for RFIC design based on $0.13{\mu}m$ RF CMOS process. For scalable modeling, several inductor patterns are designed and fabricated with variations of width, number of turns and inner radius. Feeding structures are optimized for accurate de-embedding of pad effects. After measuring the S parameters of the fabricated patterns, double-$\pi$ equivalent circuit parameters are extracted for each device and their geometrical dependences are modeled as scalable functions. The inductor library provides two types of models including standard and symmetric inductors. Standard and symmetric inductors have the range of $0.12{\sim}10.7nH$ and $0.08{\sim}13.6nH$ respectively. The models are valid up to 30GHz or self-resonance frequency. Through this research, a scalable inductor library with an error rate below 10% is developed for $0.13{\mu}m$ RF CMOS process.
KIEE International Transactions on Electrophysics and Applications
/
v.4C
no.4
/
pp.165-169
/
2004
This paper reports a miniaturized conductor-backed CPW (CBCPW) bandpass filter based on a thin film polyimide layer coated on CMOS-grade silicon. With a 20 ${\mu}{\textrm}{m}$-thick polyimide interface layer and back metallization on the CMOS-grade silicon, the interaction of electromagnetic fields with the lossy silicon substrate has been isolated, and as a result a low-loss and low-dispersive CBCPW line has been obtained. Measured attenuation constant at 20 GHz is below 1.2 ㏈/cm, which is compatible with the CPW on GaAs. In addition, by using the proposed CBCPW geometry, miniaturized BPF for Ku band application is designed and its measured frequency response shows excellent agreement with the predicted value with validating the performances of the proposed CBCPW geometry for RFIC interconnects and filter applications.
A CMOS frequency synthesizer block for multi-band orthogonal frequency division multiplexing ultra-wideband systems is proposed. The proposed frequency synthesizer adopts a double-conversion architecture for simplicity and to mitigate spur suppression requirements for out-of-band interferers in 2.4 and 5 GHz bands. Moreover, the frequency synthesizer can consist of the fewest nonlinear components, such as divide-by-Ns and a mixer with the proposed frequency plan, leading to the generation of less spurs. To evaluate the feasibility of the proposed idea, the frequency synthesizer block is implemented in 0.18-${\mu}m$ CMOS technology. The measured sideband suppression ratio is about 32 dBc, and the phase noise is -105 dBc/Hz at an offset of 1 MHz. The fabricated chip consumes 17.6 mA from a 1.8 V supply, and the die-area including pads is $0.9{\times}1.1\;mm^2$.
Proceedings of the Korea Electromagnetic Engineering Society Conference
/
2003.11a
/
pp.155-159
/
2003
This paper presents fully integrated 5 GHz band low phase noise LC tank VCO. The implemented VCO is tuned by integrated PN diode and tuning rage is $5.01{\sim}5.30$ GHz under $0{\sim}3 V$ control voltage. For good phase noise performance, LC filtering technique, common in Si CMOS process, is used, and to prevent degradation of phase noise performance by collector shot-noise and to reduce power dissipation the HBT is biased at low collector current density bias point. The measured phase noise is -87.8 dBc/Hz at 100 kHz offset frequency and -111.4 dBc/Hz at 1 MHz offset frequency which is good performance. Moreover phase noise is improved by roughly 5 dEc by LC filter. It is the first experimental result in InGaP/GaAs HBT process. The figure of merit of the fabricated VCO with LC filter is -172.1 dBc/Hz. It is the best result among 5 GHz InGaP HBT VCOs. Moreover this work shows lower DC power consumption, higher output power and more fixed output power compared with previous 4, 5 GHz band InGaP HBT VCOs.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.44
no.7
s.361
/
pp.96-104
/
2007
In this paper, the field solver based deembedding technique for the on-chip inductors to deembed the pad and surrounding ground effect was described, and the results from field solver based deembedding techniques and measurement based matrix calculation method were compared. In addition, LNA circuit is designed by using deembedded inductors and fabricated by using standard $0.25{\mu}m$ CMOS process, in the range over the 2.5GHz it shows the good agreements between measurement and simulation results when the proper deembedding was adapted. Supposed deembedding techniques can be used to get the pure on-chip devices's values and adapted to design accurate RFIC circuit design.
JSTS:Journal of Semiconductor Technology and Science
/
v.11
no.4
/
pp.295-301
/
2011
A triple-band transceiver module for 2.3/2.5/3.5 GHz mobile WiMAX, IEEE 802.16e, applications is introduced. The suggested transceiver module consists of RFIC, reconfigurable/multi-resonance MIMO antenna, embedded PCB, mobile WiMAX base band, memory and channel selection front-end module. The RFIC is fabricated in $0.13{\mu}m$ RF CMOS process and has 3.5 dB noise figure(NF) of receiver and 1 dBm maximum power of transmitter with 68-pin QFN package, $8{\times}8\;mm^2$ area. The area reduction of transceiver module is achieved by using embedded PCB which decreases area by 9% of the area of transceiver module with normal PCB. The developed triple-band mobile WiMAX transceiver module is tested by performing radio conformance test(RCT) and measuring carrier to interference plus noise ratio (CINR) and received signal strength indication (RSSI) in each 2.3/2.5/3.5 GHz frequency.
In this paper, BSIM4's IIR(Intrinsic Input Resistance) model that has a difficulty to predict $Z_{11}$ exactly is investigated by analyzing S-parameter measurement. Then a BSIM4 macro model for 70nm RF MOSFETs is proposed. That model uses external effective gate resistance which is composed of R and parallel RC. Comparison between simulation results using proposed model and IIR model is shown. The proposed model shows a better agreement between measured and simulated results up to 20GHz.
JSTS:Journal of Semiconductor Technology and Science
/
v.17
no.3
/
pp.326-332
/
2017
A switched VCO-based UWB transmitter for 3-5 GHz is implemented using $0.18{\mu}m$ CMOS technology. Using RF switch and timing control of DPGs, the uniform RF power and low power consumption are possible regardless of carrier frequency. And gate control of RF switch enables the undesired side lobe rejection sufficiently. The measured pulse width is tunable from 0.5 to 2 ns. The measured energy efficiency per pulse is 4.08% and the power consumption is 0.6 mW at 10 Mbps without the buffer amplifier.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.