• Title/Summary/Keyword: CMOS RF

Search Result 346, Processing Time 0.039 seconds

Post-Linearization of Differential CMOS Low Noise Amplifier Using Cross-Coupled FETs

  • Kim, Tae-Sung;Kim, Seong-Kyun;Park, Jin-Sung;Kim, Byung-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • A post-linearization technique for the differrential CMOS LNA is presented. The proposed method uses an additional cross-coupled common-source FET pair to cancel out the third-order intermodulation ($IM_3$) current of the main differential amplifier. This technique is applied to enhance the linearity of CMOS LNA using $0.18-{\mu}m$ technology. The LNA achieved +10.2 dBm IIP3 with 13.7 dB gain and 1.68 dB NF at 2 GHz consuming 11.8 mA from a 1.8-V supply. It shows IIP3 improvement by 6.6 dB over the conventional cascode LNA without the linearizing circuit.

A 6.5 - 8.5 GHz CMOS UWB Transmitter Using Switched LC VCO

  • Eo, Yun Seong;Park, Myung Cheol;Ha, Min-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.417-422
    • /
    • 2015
  • A 6.5 - 8.5 GHz CMOS UWB transmitter is implemented using $0.18{\mu}m$ CMOS technology. The transmitter is mainly composed of switched LC VCO and digital pulse generator (DPG). Using RF switch and DPG, the uniform power and sidelobe rejection are achieved irrespective of the carrier frequency. The measured UWB carrier frequency range is 7 ~ 8 GHz and the pulse width is tunable from 1 to 2 ns. The measured energy efficiency per pulse is 2.1 % and the power consumption is 0.6 mW at 10 Mbps without the buffer amplifier. The chip core size is $0.72mm^2$.

A 900 MHz RF CMOS LNA using Q-enhancement cascode input stage (Q-증가형 캐스코드 입력단을 이용한 900 MHz RF CMOS 저 잡음 증폭기)

  • 박수양;전동환;송한정;손상희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.183-186
    • /
    • 1999
  • A 900 71Hz RF band-pass amplifier for wireless communication systems is designed and fabricated. HSPICE simulation results show that the amplifier can achieve a tunable center frequency between 880 MHz and 920 MHz. The gain of designed amplifier is 19 dB at Q=88, and the power dissipation is about 61 mW under 3 V power supply by using the spiral inductor with negative-7m circuit and center frequency tunning circuit. The designed band-pass amplifier is implemented by using 0.6 um 2-poly-3-metal standard CMOS process.

  • PDF

470-MHz-698-MHz IEEE 802.15.4m Compliant RF CMOS Transceiver

  • Seo, Youngho;Lee, Seungsik;Kim, Changwan
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.167-179
    • /
    • 2018
  • This paper proposes an IEEE 802.15.4m compliant TV white-space orthogonal frequency-division multiplexing (TVWS)-(OFDM) radio frequency (RF) transceiver that can be adopted in advanced metering infrastructures, universal remote controllers, smart factories, consumer electronics, and other areas. The proposed TVWS-OFDM RF transceiver consists of a receiver, a transmitter, a 25% duty-cycle local oscillator generator, and a delta-sigma fractional-N phase-locked loop. In the TV band from 470 MHz to 698 MHz, the highly linear RF transmitter protects the occupied TV signals, and the high-Q filtering RF receiver is tolerable to in-band interferers as strong as -20 dBm at a 3-MHz offset. The proposed TVWS-OFDM RF transceiver is fabricated using a $0.13-{\mu}m$ CMOS process, and consumes 47 mA in the Tx mode and 35 mA in the Rx mode. The fabricated chip shows a Tx average power of 0 dBm with an error-vector-magnitude of < 3%, and a sensitivity level of -103 dBm with a packet-error-rate of < 3%. Using the implemented TVWS-OFDM modules, a public demonstration of electricity metering was successfully carried out.

Small signal model and parameter extraction of SOI MOSFET's (SOI MOSFET's의 소신호 등가 모델과 변수 추출)

  • Lee, Byung-Jin;Park, Sung-Wook;Ohm, Woo-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The increasing high frequency capabilities of CMOS have resulted in increased RF and analog design in CMOS. Design of RF and analog circuits depends critically on device S-parameter characteristics, magnitude of real and imaginary components and their behavior as a function of frequency. Utilization of scaled high performance CMOS technologies poses challenges as concerns for reliability degradation mechanisms increase. It is important to understand and quantify the effects of the reliability degradation mechanisms on the S-parameters and in turn on small signal model parameters. Various physical effects influencing small-signal parameters, especially the transconductance and capacitances and their degradation dependence, are discussed in detail. The measured S-parameters of H-gate and T-gate devices in a frequency range from 0.5GHz to 40GHz. All intrinsic and extrinsic parameters are extracted from S-parameters measurements at a single bias point in saturation. In this paper we discuss the analysis of the small signal equivalent circuits of RF SOI MOSFET's verificated for the purpose of exacting the change of parameter of small signal equivalent model followed by device flame.

A 2.3-2.7 GHz Dual-Mode RF Receiver for WLAN and Mobile WiMAX Applications in $0.13{\mu}m$ CMOS (WLAN 및 Mobile WiMAX를 위한 2.3-2.7 GHz 대역 이중모드 CMOS RF 수신기)

  • Lee, Seong-Ku;Kim, Jong-Sik;Kim, Young-Cho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • A dual-mode direct conversion receiver is developed in $0.13\;{\mu}m$ RF CMOS process for IEEE 802.11n based wireless LAN and IEEE 802.16e based mobile WiMAX application. The RF receiver covers the frequency band between 2.3 and 2.7 GHz. Three-step gain control is realized in LNA by using current steering technique. Current bleeding technique is applied to the down-conversion mixer in order to lower the flicker noise. A frequency divide-by-2 circuit is included in the receiver for LO I/Q differential signal generation. The receiver consumes 56 mA at 1.4 V supply voltage including all LO buffers. Measured results show a power gain of 32 dB, a noise figure of 4.8 dB, a output $P_{1dB}$ of +6 dBm over the entire band.

A $0.13-{\mu}m$ CMOS RF Front-End Transmitter for LTE-Advanced Systems (LTE-Advanced 표준을 지원하는 $0.13-{\mu}m$ CMOS RF Front-End 송신기 설계)

  • Kim, Jong-Myeong;Lee, Kyoung-Wook;Park, Min-Kyung;Choi, Yun-Ho;Jung, Jae-Ho;Kim, Chang-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.402-403
    • /
    • 2011
  • This paper has proposed a $0.13-{\mu}m$ CMOS RF Front-end transmitter for LTE-Advanced systems. The proposed RF Front-end supports a band 7 (from 2500 MHz to 2570 MHz) in E-UTRA of 3GPP. It can provide a maximum output power level of +10 dBm but it's a normal output power level is +0 dBm considering a low PAPR. The post-layout simulation results show that the quadrature up-conversion mixer and a driver amplifier consumes 14 mA and 28 mA from a 1.2 V supply voltage respectively, while providing a output power level of 0 dBm at the input power level of -13 dBm.

  • PDF

A Non-coherent IR-UWB RF Transceiver for WBAN Applications in 0.18㎛ CMOS (0.18㎛ CMOS 공정을 이용한 WBAN용 비동기식 IR-UWB RF 송수신기)

  • Park, Myung Chul;Chang, Won Il;Ha, Jong Ok;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.36-44
    • /
    • 2016
  • In this paper, an Impulse Radio-Ultra Wide band RF Transceiver for WBAN applications is implemented in $0.18{\mu}m$ CMOS technology. The designed RF transceiver support 3-5GHz UWB low band and employs OOK(On-Off Keying) modulation. The receiver employs non-coherent energy detection architecture to reduce complexity and power consumption. For the rejection of the undesired interferers and improvement of the receiver sensitivity, RF active notch filter is integrated. The VCO based transmitter employs the switch mechanism. As adapt the switch mechanism, power consumption and VCO leakage can be reduced. Also, the spectrum mask is always same at each center frequency. The measured sensitivity of the receiver is -84.1 dBm at 3.5 GHz with 1.579 Mbps. The power consumption of the transmitter and receiver are 0.3nJ/bit and 41 mW respectively.

CMOS Direct-Conversion RF Front-End Design for 5-GHz WLAN

  • Oh, Nam-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.114-118
    • /
    • 2008
  • Direct-conversion RF front-end for 5-GHz WLAN is implemented in $0.18-{\mu}m$ CMOS technology. The front-end consists of a low noise amplifier, and low flicker noise down-conversion mixers. For the mixer, an inductor is included to resonate out parasitic tail capacitances in the transconductance stage at the operating frequency, thereby improves the flicker noise performance of the mixer, and the overall noise performance of the front-end. The receiver RF front-end has 6.5 dB noise figure, - 13 dBm input IP3, and voltage conversion gain of 20 dB with the power consumption of 30 mW.

Development and Evaluation of Advanced Telemetry System (개선된 텔레메트리 시스템 개발 및 평가)

  • 박차훈;서희돈;박종대
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.5
    • /
    • pp.513-517
    • /
    • 2000
  • In this study, we fabricated the advanced telemetry system that transmitting media use radio frequency(RF) for the middle range measurement of the physiological signals and receiving media use optical for electromagnetic interference problem. The telemetry system within a size of 65$\times$125$\times$45mm consists of three parts: a RF transmitter, a optical receiver and a physiological signal processing CMOS one chip. Advantages of proposed telemetry system is wireless middle range(50m) FM transmission, reduce electromagnetic interference to a minimum which enables a comfortable bed-side telemetry system.

  • PDF