• Title/Summary/Keyword: CMOS LNA

Search Result 133, Processing Time 0.023 seconds

A 0.18-μm CMOS Low-Power and Wideband LNA Using LC BPF Loads (광대역 LC 대역 통과 필터를 부하로 가지는 0.18-μm CMOS 저전력/광대역 저잡음 증폭기 설계)

  • Shin, Sang-Woon;Seo, Yong-Ho;Kim, Chang-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.76-80
    • /
    • 2011
  • This paper has proposed a 3~5 GHz low-power and wideband LNA(Low Noise Amplifier), which has been implemented in a 0.18-${\mu}m$ CMOS technology. The proposed LNA has basically the noise-cancelling topology to achieve a balun-function, wideband input matching, and relative low noise figure. In addition, it has utilized a 2nd-order LC-band-pass filter(BPF) as its output load to achieve higher power gain and lower noise figure with the lowest dc power consumption among previously reported works. The proposed amplifier consumes only 3.94 mA from a 1.8 V supply voltage. The simulation results show a power gain of more than +17 dB, a noise figure of less than +4 dB, and an input IP3 of -15.5 dBm.

0.11μm CMOS Low Power Broadband LNA design for 3G/4G LTE Environment (3G, 4G LTE 환경에 적합한 0.11μm CMOS 저전력, 광대역의 저잡음증폭기 설계)

  • Song, Jae-Yeol;Lee, Kyung-Hoon;Park, Seong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1027-1034
    • /
    • 2014
  • We present the Low Power Broadband Low noise amplifier(LNA) that can be applied a whole bandwidth from 3G to 4G LTE. This multi input LNA was designed to steadily amplify through a multi input method regardless the size of the input signal and operate on a wide range of frequency band from a standard 3G CDMA band 1.2GHz to LTE band 2.5GHz. The designed LNA consumes an average of 6mA on a 1.2V power supply and this was affirmed using computer simulation tests. The amplification which was corresponded to the lowest input signal is at a maximum of 20dB and was able to obtain the minimum value of the gain of -10dB. The Noise figure is less than 3dB at a High-gain mode and is less than 15dB at a Low-gain mode.

A RF Frong-End CMOS Transceiver for 2㎓ Dual-Band Applications

  • Youn, Yong-Sik;Kim, Nam-Soo;Chang, Jae-Hong;Lee, Young-Jae;Yu, Hyun-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • This paper describes RF front-end transceiver chipset for the dual-mode operation of PCS-Korea and IMT-2000. The transceiver chipset has been implemented in a $0.25\mutextrm{m}$ single-poly five-metal CMOS technology. The receiver IC consists of a LNA and a down-mixer, and the transmitter IC integrates an up-mixer. Measurements show that the transceiver chipset covers the wide RF range from 1.8GHz for PCS-Korea to 2.1GHz for IMT-2000. The LNA has 2.8~3.1dB NF, 14~13dB gain and 5~4dBm IIP3. The down mixer has 15.5~16.0dB NF, 15~13dB power conversion gain and 2~0dBm IIP3. The up mixer has 0~2dB power conversion gain and 6~3dBm OIP3. With a single 3.0V power supply, the LNA, down-mixer, and up-mixer consume 6mA, 30mA, and 25mA, respectively.

An Integrated High Linearity CMOS Receiver Frontend for 24-GHz Applications

  • Rastegar, Habib;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.595-604
    • /
    • 2016
  • Utilizing a standard 130-nm CMOS process, a RF frontend is designed at 24 GHz for automotive collision avoidance radar application. Single IF direct conversion receiver (DCR) architecture is adopted to achieve high integration level and to alleviate the DCR problem. The proposed frontend is composed of a two-stage LNA and downconversion mixers. To save power consumption, and to enhance gain and linearity, stacked NMOS-PMOS $g_m$-boosting technique is employed in the design of LNA as the first stage. The switch transistors in the mixing stage are biased in subthreshold region to achieve low power consumption. The single balanced mixer is designed in PMOS transistors and is also realized based on the well-known folded architecture to increase voltage headroom. This frontend circuit features enhancement in gain, linearity, and power dissipation. The proposed circuit showed a maximum conversion gain of 19.6 dB and noise figure of 3 dB at the operation frequency. It also showed input and output return losses of less than -10 dB within bandwidth. Furthermore, the port-to-port isolation illustrated excellent characteristic between two ports. This frontend showed the third-order input intercept point (IIP3) of 3 dBm for the whole circuit with power dissipation of 6.5 mW from a 1.5 V supply.

Post-Linearization Technique of CMOS Cascode Low Noise Amplifier Using Dual Common Gate FETs (두 개의 공통 게이트 FET를 이용한 캐스코드형 CMOS 저잡음 증폭기의 후치 선형화 기법)

  • Huang, Guo-Chi;Kim, Tae-Sung;Kim, Seong-Kyun;Kim, Byung-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.41-46
    • /
    • 2007
  • A novel post-linearization technique is proposed for CMOS cascode low noise amplifier (LNA). The technique uses dual common gate FETs one of which delivers the linear currents to a load and the other one sinks the $3^{rd}$ order intermodulation currents of output currents from the common source FET. Selective current branching can be implemented in $0.18{\mu}m$ CMOS process by using a thick oxide FET as an IM3 sinker with a normal FET as a linear current buffer. A differential LNA adopting this technique is designed at 2.14GHz. The measurement results show 11dBm IIP3, 15.5dB power gain and 2.85dB noise figure consuming 12.4mA from 1.8V power supply. Compared with the LNA with turning off the IM3 sinker, the proposed technique improves the IIP3 by 7.5 dB.

Design of Variable Gain Low Noise Amplifier Using PTAT Bandgap Reference Circuit (PTAT 밴드갭 온도보상회로를 적용한 가변 이득 저잡음 증폭기 설계)

  • Choi, Hyuk-Jae;Go, Jae-Hyeong;Kim, Koon-Tae;Lee, Je-Kwang;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.4
    • /
    • pp.141-146
    • /
    • 2010
  • In this paper, bandgap reference PTAT(Proportional to Absolute Temperature) circuit and flexible gain control of LNA(Low Noise Amplifier) which is usable in Zigbee system of 2.4GHz band are designed by TSMC $0.18{\mu}m$ CMOS library. PTAT bandgap reference circuit is proposed to minimize the instability of CMOS circuit which may be unstable in temperature changes. This circuit is designed such that output voltage remains within 1.3V even when the temperature varies from $-40^{\circ}C$ to $-50^{\circ}C$ when applied to the gate bias voltage of LNA. In addition, the LNA is designed to be operated on 2.4GHz which is applicable to Zigbee system and able to select gains by changing output impedance using 4 NMOS operated switches. The simulation result shows that achieved gain is 14.3~17.6dB and NF (Noise Figure) 1.008~1.032dB.

  • PDF

An Ultra Wideband Low Noise Amplifier in 0.18 μm RF CMOS Technology

  • Jung Ji-Hak;Yun Tae-Yeoul;Choi Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.112-116
    • /
    • 2005
  • This paper presents a broadband two-stage low noise amplifier(LNA) operating from 3 to 10 GHz, designed with 0.18 ${\mu}m$ RF CMOS technology, The cascode feedback topology and broadband matching technique are used to achieve broadband performance and input/output matching characteristics. The proposed UWB LNA results in the low noise figure(NF) of 3.4 dB, input/output return loss($S_{11}/S_{22}$) of lower than -10 dB, and power gain of 14.5 dB with gain flatness of $\pm$1 -dB within the required bandwidth. The input-referred third-order intercept point($IIP_3$) and the input-referred 1-dB compression point($P_{ldB}$) are -7 dBm and -17 dBm, respectively.

A Fully-Integrated Low Power K-band Radar Transceiver in 130nm CMOS Technology

  • Kim, Seong-Kyun;Cui, Chenglin;Kim, Byung-Sung;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.426-432
    • /
    • 2012
  • A fully-integrated low power K-band radar transceiver in 130 nm CMOS process is presented. It consists of a low-noise amplifier (LNA), a down-conversion mixer, a power amplifier (PA), and a frequency synthesizer with injection locked buffer for driving mixer and PA. The receiver front-end provides a conversion gain of 19 dB. The LNA achieves a power gain of 15 dB and noise figure of 5.4 dB, and the PA has an output power of 9 dBm. The phase noise of VCO is -90 dBc/Hz at 1-MHz offset. The total dc power dissipation of the transceiver is 142 mW and the size of the chip is only $1.2{\times}1.4mm^2$.

Design of a 2.4GHz 2 stage Low Noise Amplifier for RF Front-End In a 0.35${\mu}{\textrm}{m}$ CMOS Technology

  • Kwon, Kisung;Hwang, Youngseung;Jung, Woong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.11-15
    • /
    • 2002
  • 3 V, 2.46GHz Low Noise Amplifier (LNA) have been designed for standard 0.35$\mu\textrm{m}$ CMOS process with one poly and four metal layers. This design includes on-chip biasing, matching network and multilayer spiral inductors. The single-ended amplifier provides a forward gain of 20.5dB with a noise figure 3.35dB, and an IIP3 of -6dBm while drawing 59mW total Power consumption

  • PDF

Design of a 2.5V 2.4GHz Single-Ended CMOS Low Noise Amplifier (2.5V, 2.4GHz CMOS 저잡음 증폭기의 설계)

  • Hwang, Young-Sik;Jang, Dae-Seok;Jung, Woong
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.191-194
    • /
    • 2000
  • A 2.4 GHz single ended two stage low noise amplifier(LNA) is designed for Bluetooth application. The circuit was implemented in a standard digital 0.25 $\mu\textrm{m}$ CMOS process with one poly and five metal layers. At 2.4 GHz, the LNA dissipates 34.5 mW from a 2.5V power supply voltage and provides 24.6 dB power gain, 2.85 dB minimum noise figure, -66.3 dB reverse isolation, and an output 1-dB compression level of 8.5 dBm.

  • PDF