• Title/Summary/Keyword: CMOS LC VCO

Search Result 68, Processing Time 0.022 seconds

The Open Loop Multiple Split Ring Resonator Based Voltage Controlled Oscillator in 0.13 um CMOS (개방 루프 다중 분할 링 공진기를 이용한 0.13 um 전압 제어 발진기 설계)

  • Kim, Hyoung-Jun;Choi, Jae-Won;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.202-207
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator(VCO) using the open loop multiple split ring resonator(OLMSRR) is presented for improving the phase noise, implemented in 130 nm CMOS technology. Compared with the conventional CMOS LC resonator, the proposed CMOS OLMSRR has the larger coupling coefficient value, which makes a higher Q-factor, and has improved the phase noise of the VCO. The proposed CMOS VCO based OLMSRR has the phase noise of -99.67 dBc/Hz @ 1 MHz in the oscillation frequency. Compared with the VCO using the conventional CMOS LC resonator and the proposed VCO using the CMOS OLMSRR structure has been improved in 7 dB. The prototype 24 GHz CMOS VCO is implemented in 130 nm CMOS and occupies a compact die area of $0.7\;mm{\times}0.9\;mm$.

10 GHz LC Voltage-controlled Oscillator with Amplitude Control Circuit for Output Signal (출력 신호의 진폭 제어 회로를 가진 10 GHz LC 전압 제어 발진기)

  • Song, Changmin;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.975-981
    • /
    • 2020
  • A 10 GHz LC voltage-controlled oscillator (VCO), which controls an amplitude of output signal, is proposed to improve the phase noise. The proposed amplitude control circuit for the LC VCO consists of a peak detector, an amplifier, and a current source. The peak detector is performed detecting the lowest voltage of the output signal by using two diode-connected NMOSFET and a capacitor. The proposed 10 GHz LC VCO with an amplitude control circuit for output signal is designed using a 55 nm CMOS process with a supply voltage of 1.2 V. Its area is 0.0785 ㎟. The amplitude control circuit used in the proposed LC VCO reduces the amplitude variation 242 mV generated in the output signal of the conventional LC VCO to 47 mV. Furthermore, it improves the peak-to-peak time jitter from 8.71 ps to 931 fs.

The Design and Fabrication of Reduced Phase Noise CMOS VCO (위상 잡음을 개선한 CMOS VCO의 설계 및 제작)

  • Kim, Jong-Sung;Lee, Han-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.539-546
    • /
    • 2007
  • In this paper, a 3-D EM simulation methodology for on-chip spiral inductor analysis has provided and it is shown that the methodology can be adapted to the highly predictable design for CMOS VCO. LC-resonator type VCO have fabricated by using standard 0.25 um CMOS process. And the LC VCO layout case which has pattern ground shielded inductors and the other layout case which has no pattern grounded inductors were fabricated for the verification of their effects on the VCO's phase noise by reducing the Q-factor of inductors. Fabricated VCO has 3.094 GHz, -12.15 dBm output at the tuning voltage of 2.5 V, and from the simulation, Q-factor of the pattern grounded inductor has increased 8% at 3 GHz, and from the measurement results, the phase noise has reduced by 9 dB at the 3 MHz off-set frequency for the pattern grounded inductor layout case.

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

  • Yu, Tae-Geun;Cho, Seong-Ik;Jeong, Hang-Geun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.281-285
    • /
    • 2006
  • In order to widen the tuning range, capacitive degeneration is applied to fully CMOS LC VCOs. Small signal analysis shows that the fixed MOSFET capacitance seen by the LC tank is smaller than that of the traditional LC VCO, resulting in significant extension in the tuning range. This improvement in the tuning range has been verified through measurement of a 10-GHz LC VCO fabricated by $0.18{\mu}m$ CMOS process. The measured tuning range is from 9.8-GHz to 12-GHz, which is better than those of the reported CMOS LC VCOs in 10-GHz band. The measured phase noise is - 103dBc/Hz at 1MHz offset.

Low Phase Noise LC-VCO with Active Source Degeneration

  • Nguyen, D.B. Yen;Ko, Young-Hun;Yun, Seok-Ju;Han, Seok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.207-212
    • /
    • 2013
  • A new CMOS voltage-bias differential LC voltage-controlled oscillator (LC-VCO) with active source degeneration is proposed. The proposed degeneration technique preserves the quality factor of the LC-tank which leads to improvement in phase noise of VCO oscillators. The proposed VCO shows the high figure of merit (FOM) with large tuning range, low power, and small chip size compared to those of conventional voltage-bias differential LC-VCO. The proposed VCO implemented in 0.18-${\mu}m$ CMOS shows the phase noise of -118 dBc/Hz at 1 MHz offset oscillating at 5.03 GHz, tuning range of 12%, occupies 0.15 $mm^2$ of chip area while dissipating 1.44 mW from 0.8 V supply.

A $2{\sim}6GHz$ Wide-band CMOS Frequency Synthesizer With Single LC-tank VCO (싱글 LC-탱크 전압제어발진기를 갖는 $2{\sim}6GHz$의 광대역 CMOS 주파수 합성기)

  • Jeong, Chan-Young;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.74-80
    • /
    • 2009
  • This paper describes a $2{\sim}6GHz$ CMOS frequency synthesizer that employs only one LC-tank voltage controlled oscillator (VCO). For wide-band operation, optimized LO signal generator is used. The LC-tank VCO oscillating in $6{\sim}8GHz$ provides the required LO frequency by dividing and mixing the VCO output clocks appropriately. The frequency synthesizer is based on a fractional-N phase locked loop (PLL) employing third-order 1-1-1 MASH type sigma-delta modulator. Implemented in a $0.18{\mu}m$ CMOS technology, the frequency synthesizer occupies the area of $0.92mm^2$ with of-chip loop filter and consumes 36mW from a 1.8V supply. The PLL is completed in less than $8{\mu}s$. The phase noise is -110dBC/Hz at 1MHz offset from the carrier.

Design of CMOS LC VCO with Linearized Gain for 5.8GHz/5.2GHz/2.4GHz WLAN Applications (5.8GHz/5.2GHz/2.4GHz 무선 랜 응용을 위한 선형 이득 CMOS LC VCO의 설계)

  • Ahn Tae-Won;Moon Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.59-66
    • /
    • 2005
  • CMOS LC VCO for tri-bind wireless LAN applications was designed in 1.8V 0.18$\mu$m CMOS process. PMOS transistors were chosen for VCO core to reduce flicker noise. The possible operation was verified for 5.8GHz band (5.725$\~$5.825GHz), 5.2GHz band (5.150$\~$5.325GHz), and 2.4GHz band (2.412$\~$2.484GHz) using the switchable L-C resonators. To linearize its frequency-voltage gain (Kvco), optimized multiple MOS varactor biasing technique was used for capacitance linearization and PLL stability improvement. VCO core consumed 2mA current and $570{\mu}m{\times}600{\mu}m$ die area. The phase noise was lower than -110dBc/Hz at 1MHz offset for tri-band frequencies.

Design of a Wide-Band CMOS VCO With Reduced Variations of VCO Gain and Frequency Steps for DTV Tuner Applications (VCO 이득 변화와 주파수 간격 변화를 줄인 DTV용 광대역 CMOS VCO 설계)

  • Ko, S.O.;Sim, S.M.;Sho, H.T.;Kim, C.K.;Yu, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.217-218
    • /
    • 2008
  • Since the digital TV signal band is very wide ($54{\sim}806MHz$), the VCO used in the frequency synthesizer must also have a wide frequency tuning range. Multiple LC VCOs have been used to cover such wide frequency band. However, the chip area increases due to the increased number of integrated inductors. A general method for achieving both reduced VCO gain(Kvco) and wide frequency band is to use the switched-capacitor bank LC VCO. In this paper, a scheme is proposed to cover the full band using only one VCO. The RF VCO block designed using a 0.18um CMOS process consists of a wideband LC VCO with reduced variation of VCO gain and frequency steps. Buffers, divide-by-2 circuits and control logics the simulation results show that the designed circuit has a phase noise at 100kHz better than -106dBc/Hz throughout the signal band and consumes $9.5{\sim}13mA$ from a 1.8V supply.

  • PDF

Low Voltage CMOS LC VCO with Switched Self-Biasing

  • Min, Byung-Hun;Hyun, Seok-Bong;Yu, Hyun-Kyu
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.755-764
    • /
    • 2009
  • This paper presents a switched self-biasing and a tail current-shaping technique to suppress the 1/f noise from a tail current source in differential cross-coupled inductance-capacitance (LC) voltage-controlled oscillators (VCOs). The proposed LC VCO has an amplitude control characteristic due to the creation of negative feedback for the oscillation waveform amplitude. It is fabricated using a 0.13 ${\mu}m$ CMOS process. The measured phase noise is -117 dBc/Hz at a 1 MHz offset from a 4.85 GHz carrier frequency, while it draws 6.5 mA from a 0.6 V supply voltage. For frequency tuning, process variation, and temperature change, the amplitude change rate of the oscillation waveform in the proposed VCO is 2.1 to 3.2 times smaller than that of an existing VCO with a fixed bias. The measured amplitude change rate of the oscillation waveform for frequency tuning from 4.55 GHz to 5.04 GHz is 131 pV/Hz.

Design of CMOS LC VCO with Fast AFC Technique for IEEE 802.11a/b/g Wireless LANs (IEEE 802.11a/b/g 무선 랜을 위한 고속 AFC 기법의 CMOS LC VCO의 설계)

  • Ahn Tae-Won;Yoon Chan-Geun;Moon Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.17-22
    • /
    • 2006
  • CMOS LC VCO with fast response adaptive frequency calibration (AFC) technique for IEEE 802.11a/b/g WLANs is designed in 1.8V $0.18{\mu}m$ CMOS process. The possible operation is verified for 5.8GHz band, 5.2GHz band, and 2.4GHz band using the switchable L-C resonators. To linearize its frequency-voltage gain (Kvco), optimized multiple MOS varactor biasing tecknique is used. In order to operate in each band frequency range with reduced VCO gain, 4-bit digitally controlled switched- capacitor bank is used and a wide-range digital logic quadricorrelator (WDLQ) is implemented for fast frequency detector.