• Title/Summary/Keyword: CMOS Analog Multiplier

Search Result 16, Processing Time 0.021 seconds

Design of Low voltage CMOS Analog Four-Quadrant Multiplier (저전압 CMOS 아날로그 4상한 멀티플라이어 설계)

  • 유영규;박종현;윤창훈;김동용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.244-247
    • /
    • 1999
  • In this paper, a low voltage CMOS analog four-quadrant multiplier is presented. The proposed multiplier is composed of a pair of transconductor and lowers supply voltage down to $V_{T}$+2 $V_{Ds,sat}$+ $V_{DS,triode}$. The designed analog four-quadrant multiplier have simulated by HSPICE using 0.25${\mu}{\textrm}{m}$ n-well CMOS process with a 1.2V supply voltage. Simulation results show that the THD can be 1.28% at maximum differential input of 0.7 $V_{p-p}$././.

  • PDF

Low-Voltage CMOS Analog Four-Quadrant Multiplier (저전압 CMOS 아날로그 4상한 멀티플라이어)

  • 유영규;박종현;최현승;김동용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.84-88
    • /
    • 2000
  • In this paper, a low voltage CMOS analog four-quadrant multiplier is presented. The proposed multiplier is composed of two fully differential transconductors and lowers supply voltage down to VT+2VDS,sat+VDS,triode. The designed analog four-quadrant multiplier has simulated by HSPICE using 0.25㎛ n-well CMOS process with a 1.2V supply voltage. Simulation results show that the THD can be 1.28% at maximum differential input of 0.7VP-P.

  • PDF

Design of A CMOS Analog Multiplier using Gilbert Cell

  • Lee, Geun-Ho;Park, Hyun-Seung;Yu, Young-Gyu;Kim, Tae-Pyung;Kim, Jae-Young;Kim, Dong-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.44-48
    • /
    • 1999
  • The CMOS four-quadrant analog multiplier for low-voltage low-power applications are presented in this thesis. The circuit approach is based on the characteristic of the LV (Low-Voltage) composite transistor which is one of the useful analog building block. SPICE simulations are carried out to examine the performances of the designed multiplier. Simulation results are obtained by 0.6㎛ CMOS parameters with 2V power supply. The basic configuration of the multiplier is the CMOS Gilbert cell with two LV composite transistors. The linear input range of the multiplier is over ±0.4V with a linearity error of less than 1.3%. The measured -3dB bandwidth is 288MHz and the power dissipation is 255 ㎼.

  • PDF

A Study on Circuit Design Method for Linearity and Range Improvement of CMOS Analog Current-Mode Multiplier (CMOS 아날로그 전류모드 곱셈기의 선형성과 동적범위 향상을 위한 회로설계 기법에 관한 연구)

  • Lee, Daniel Juhun;Kim, Hyung-Min;Park, So-Youn;Nho, Tae-Min;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.479-486
    • /
    • 2020
  • In this paper, we present a design method for improving the linearity and dynamic range of the analog current mode multiplier circuit, which is one of the key devices in an analog current mode AI processor. The proposed circuit consists of 4 quadrant translinear loops made up of NMOS transistors only, which minimizes physical mismatches of the transistors. The proposed circuit can be implemented at 117㎛ × 109㎛ in 0.35㎛ CMOS process and has a total harmonic distortion of 0.3%. The proposed analog current mode multiplier is expected to be useful as the core circuit of a current mode AI processor.

Design of a Analog Multiplier for low-voltage low-power (저전압 저전력 아날로그 멀티플라이어 설계)

  • Lee, Goun-Ho;Seul, Nam-O
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3058-3060
    • /
    • 2005
  • In this paper, the CMOS four-quadrant analog multipliers for low-voltage low-power applications are presented. The circuit approach is based on the characteristic of the LV (Low-Voltage) composite transistor which is one of the useful analog building blocks. SPICE simulations are carried out to examine the performances of the designed multipliers. Simulation results are obtained by $0.25{\mu}m$ CMOS parameters with 2V power supply. The LV composite transistor can easily be extended to perform a four-quadrant multiplication. The multiplier has a linear input range up to ${\pm}0.5V$ with a linearity error of less than 1%. The measured -3dB bandwidth is 290MHz and the power dissipation is $37{\mu}W$. The proposed multiplier is expected to be suitable for analog signal processing applications such as portable communication equipment, radio receivers, and hand-held movie cameras.

  • PDF

A Low Voltage Analog Four-quadrant Multiplier (저전압 아날로그 4상한 멀티플라이어)

  • 김종민;유영규;이근호;윤창훈;김동용
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.205-208
    • /
    • 2000
  • In this paper, a low voltage CMOS analog four-quadrant multiplier using two V-I converters is presented. The proposed V-I converter is composed of the series composite transistor and the low voltage composite transistor. The designed analog four-quadrant multiplier has simulated by HSPICE using 0.25$\mu\textrm{m}$ n-well CMOS process parameters with a 2V supply voltage. Simulation results show that the power dissipation is 1.55㎿, the cutoff frequency is 489MHz, and the THD can be 0.26% at maximum differential input of 1V$\sub$p-p/.

  • PDF

Design of A CMOS Composite Cell Analog Multiplier (CMOS 상보형 구조를 이용한 아날로그 멀티플라이어 설계)

  • Lee, Geun-Ho;Choe, Hyeon-Seung;Kim, Dong-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.43-49
    • /
    • 2000
  • In this paper, the CMOS four-quadrant analog multipliers for low-voltage low-power applications ate presented. The circuit approach is based on the characteristic of the LV(Low-Voltage) composite transistor which is one of the useful analog building blocks. SPICE simulations are carried out to examine the performances of the designed multipliers. Simulation results are obtained by 0.6${\mu}{\textrm}{m}$ CMOS parameters with 2V power supply. The LV composite transistor can easily be extended to perform a four-quadrant multiplication. The multiplier has a linear input range up to $\pm$0.5V with a linearity error of less than 1%. The measured -3㏈ bandwidth is 290MHz and the power dissipation is 373㎼. The proposed multiplier is expected to be suitable for analog signal processing applications such as portable communication equipment, radio receivers, and hand-held movie cameras.

  • PDF

Voltage-Mode CMOS Squarer/Multiplier Circuit

  • Bonchu, B.;Surakampontorn, W.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.646-649
    • /
    • 2002
  • In this paper, a low-voltage CMOS squarer and a four-quadrant analog multiplier are presented. It is based on a source-coupled pair and a scaled-floating voltage generator which are modified to work as a voltage squaring and a sum/difference circuits. The proposed squarer/multiplier have been simulated with HSPICE, where -3㏈ bandwidth of 10MHz is achieved. The power consumption is about 0.6㎽, from a ${\pm}$1.5V supply, and the total harmonic distortion is less than 0.7%, with a 1.2V peak-to-peak 1MHz input signal.

  • PDF

A Study on the new four-quadrant MOS analog multiplier using quarter-square technique

  • Kim, Won-U;Byeon, Gi-Ryang;Hwang, Ho-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.26-33
    • /
    • 2002
  • In this paper, a new four-quadrant MOS analog multiplier Is proposed using the quarter-square technique, which is based on the quadratic characteristics of MOS transistor operating in the saturation region and the difference operation of a source-coupled differential circuits. The proposed circuit has been fabricated in a p-well CMOS process. The multiplier achieves a total harmonic distortion of less than 1 percent for the both input ranges of 50 percent of power supply, a -3㏈ bandwidth of 30㎒ a dynamic range of 81㏈ and a power consumption of 40㎽. The active chip area is 0.54㎟. The supposed multiplier circuit is simple and adjust high frequency application because one input signal transfer output by one transistor.

Design of GHz Analog FIR Filter based on a Distributed Amplifier (분산증폭기 기반 GHz 대역 아날로그 FIR 필터 설계)

  • Yeo, Hyeop-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1753-1758
    • /
    • 2012
  • This paper introduces analog FIR filters based on a distributed amplifier and analyzes the proposed filter's characteristics. A simple design method of an analog FIR filter based on the digital filter design technique is also introduced. The proposed analog FIR filters are a moving average(MA) and a comb type filters with no multiplier. This simple structures of the proposed filters may enable to operate at multi-GHz frequency range and applicable to combine a filter and an amplifier of RF system. The proposed analog FIR filters were implemented with standard $0.18{\mu}m$ CMOS technology. The designed GHz analog FIR filters are simulated by Cadence Spectre and compared to the results of digital FIR filters obtained from MATLAB simulations. From the simulation results, the characteristics of the proposed analog FIR filters are fairly well matched with those of digital FIR filters.