• Title/Summary/Keyword: CMCase activity

Search Result 140, Processing Time 0.035 seconds

Studies on the Production of Alcohol from Woods (목재(木材)를 이용(利用)한 Alcohol 생산(生産)에 관(關)한 연구(硏究))

  • Cheong, Jin Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.59 no.1
    • /
    • pp.67-91
    • /
    • 1983
  • In order to examine the alcohol production from softwoods (Pinus densiflora Sieb. et Zucc., Pinus rigida Miller, Larix leptolepis Gordon) and hardwoods (Alnus japonica Steud., Castanea crenata Sieb. et Zucc. Populus euramericana CV 214), chemical compositions were analyzed and conditions of acid hydrolysis with wood meals were established. Also strains which could remarkably decompose the cellulose were identified, and conditions of cellulase production of strains, characteristics of cellulase, and alcohol fermentation were examined. The results were summarized as follows. 1) In acid hydrolysis of wood, the high yield of reducing sugars was shown from 1.0% to 2.0% of hydrochloric acid and 2.0% of sulfuric acid. The highest yield was produced 23.4% at wood meals of Alnus japonica treated with 1.0% of hydrochloric acid. 2) The effect of raising the hydrolysis was good at $1.5kg/cm^2$, 30 times (acid/wood meal), and 45 min in treating hydrochloric acid and 30 min in treating sulfuric acid. 3) The pretreatments with concentrated sulfuric acid were more effective concentration ranged from 50% to 60% than that with hydrochloric acid and its concentration ranged from 50% to 60%. 4) The quantative analysis of sugar composition of acid hydrolysates revealed that glucose and arabinose were assayed 137.78mg and 68.24mg with Pinus densiflora, and 102.22mg and 65.89mg with Alnus janonica, respectively. Also xylose and galactose were derived. 5) The two strains of yeast which showed remarkably high alcohol productivity were Saccharomyces cerevisiae JAFM 101 and Sacch. cerevisiae var. ellipsoldeus JAFM 125. 6) The production of alcohol and the growth of yeasts were effective with the neutralization of acid hydrolysates by $CaCO_3$ and NaOH. Production of alcohol was excellent in being fermented between pH 4.5-5.5 at $30^{\circ}C$ and growth of yeasts between pH 5.0-6.0 at $24^{\circ}C$. 7) The production of alcohol was effective with the addition of 0.02% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, 0.02% $MnCl_2$. Growth of yeasts was effective with 0.04-0.06% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.2% $K_2HPO_4$ and $K_3PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, and 0.002% NaCl. 8) Among various vitamins, the production of alcohol was effective with the addition to pyridoxine and riboflavin, and the growth of yeasts with the addition to thiamin, Ca-pantothenate, and biotin. The production of aocohol was increased in 0.1% concentration of tannin and furfural, but mas decreased in above concentration. 9) In 100ml of fermented solution, alcohol and yeast were produced 2.201-2.275ml and 84-114mg for wood meals of Pinus densiflora, and 2.075-2.125ml and 104-128mg for that of Alnus japonica. Residual sugars were 0.55-0.60g and 0.60-0.65g for wood meals of Pinus densiflora and Alnus japonica, respectively, and pH varied from 3.3 to 3.6. 10) A strain of Trichoderma viride JJK. 107 was selected and identified as its having the highest activity of decomposing cellulose. 11) The highest cellulase production was good when CMCase incubated for 5 days at pH 6.0, $30^{\circ}C$ and xylanase at pH 5.0, $35^{\circ}C$. The optimum conditions of cellulase activity were proper in case of CMCase at pH 4.5, $50^{\circ}C$ and xylanase at pH 4.5, $40^{\circ}C$. 12) In fermentation with enzymatic hydrolysates, the peracetic acid treatment for delignification showed the best yields of alcohol and its ratio was effective with the addition of about 10 times. 13) The production of alcohol was excellent when wood meals and Koji of wheat bran was mixed with 10 to 8 and the 10g of wood meals of Pinus densiflora produced 2.01-2.14ml of alcohol and Alnus japonica 2.11-2.20ml.

  • PDF

Mycelial Culture Conditions of Lepista nuda and Extracellular Enzyme Activity (민자주방망이버섯(Lepista nuda) 균사체 배양조건 및 효소활성)

  • Kim Sang-Dae;Kim Ji-Hye;Kim Jong-Bong;Han Yeong-Hwang
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.164-167
    • /
    • 2005
  • The culture condition and medium composition for the enhanced mycelial growth of Lepista nuda DGUM 26501 were investigated. The optimal temperature and pH for the mycelial growth were $24^{\circ}C$ and $7.0\~8.0$, respectively. The partial pressure of oxygen for the enhanced mycelial growth was more than $10\%\;O_2$. When Czapek-Dox medium was used as a minimal medium, manitol and xylitol were very good carbon sources. Organic nitrogen sources were better than inorganic ones for mycelial growth. As the nitrogen source tested, com steep liquor, soytone and protease peptone were the best as a source of organic nitrogen sources. When ammonium phosphate as phosphorus sources was used, the enhanced mycelial growth was shown. Nicotinic acid was proved to be the most appropriate source of vitamin. After the mycelia of L. nuda DGUM 26501 was cultivated at $24^{\circ}C$ for 10 days in LNM broth (pH 7.0), the activities of extracellular enzyme were determined. The specific activity of $\alpha-amylase$ was much higher than those of other enzymes. However, little or no enzyme activities of $\beta-glucosidase$, CMCase, laccase and lipase were found.

Isolation and Characterization of Yam-Putrefactive Psychrotrophic Bacteria from Rotted Yam (생마 저온부패 원인세균의 분리 및 부패균의 특성)

  • Ryu Hee-Young;Kim Young-Sook;Park Sang-Jo;Lee Bong-Ho;Kwon Soon-Tae;Sohn Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.109-114
    • /
    • 2006
  • Yam has been recognized as healthy food due to its various biological activities, such as anti-obesity, antimicrobial, anticancer and immuno-stimulation activities, and its consumption has been increased during last decades. In this study, to investigate low-temperature, long-term storage of yam and to develop processed yam products, yam-putrefactive psychrotrophic bacteria were isolated from rotted yam and identified based on BBL identification system, fatty acid analysis in cell membrane and 16S rDNA sequence analysis. The putrefaction activity of isolated thirteen bacteria was evaluated using yam-slices (NaOCl-treated, autoclaved yam and without treatment), and YAM-10 and YAM-12 were identified as major psychrotrophic putrefactive bacteria. Both YAM-10 (Pseudomonas cepacia) and YAM-12 (Pseudomonas rhodesiae) bacteria grew well at 4$\sim$12$^{\circ}C$ and showed strong activity of polymer degrading enzymes, especially amylase, carboxy methyl cellulase and xylanase, at 20$^{\circ}C$. But they failed to grow at acidic pH (<5) or alkaline pH (>10). Our results suggested that the control of psychrotrophic Pseudomonas sp. by pH change and inhibition of polymer degrading enzymes, such as amy-lase, are necessary to long-term storage of yam.

Characterization of a Multimodular Endo-β-1,4-Glucanase (Cel9K) from Paenibacillus sp. X4 with a Potential Additive for Saccharification

  • Lee, Jae Pil;Kim, Yoon A;Kim, Sung Kyum;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.588-596
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel9K, was cloned using the shot-gun method from Paenibacillus sp. X4, which was isolated from alpine soil. The gene was 2,994 bp in length, encoding a protein of 997 amino acid residues with a predicted signal peptide composed of 32 amino acid residues. Cel9K was a multimodular enzyme, and the molecular mass and theoretical pI of the mature Cel9K were 103.5 kDa and 4.81, respectively. Cel9K contains the GGxxDAGD, PHHR, GAxxGG, YxDDI, and EVxxDYN motifs found in most glycoside hydrolase family 9 (GH9) members. The protein sequence showed the highest similarity (88%) with the cellulase of Bacillus sp. BP23 in comparison with the enzymes with reported properties. The enzyme was purified by chromatography using HiTrap Q, CHT-II, and HiTrap Butyl HP. Using SDS-PAGE/activity staining, the molecular mass of Cel9K was estimated to be 93 kDa, which is a truncated form produced by the proteolytic cleavage of its C-terminus. Cel9K was optimally active at pH 5.5 and $50^{\circ}C$ and showed a half-life of 59.2 min at $50^{\circ}C$. The CMCase activity was increased to more than 150% in the presence of 2 mM $Na^+$, $K^+$, and $Ba^{2+}$, but decreased significantly to less than 50% by $Mn^{2+}$ and $Co^{2+}$. The addition of Cel9K to a commercial enzyme set (Celluclast 1.5L + Novozym 188) increased the saccharification of the pretreated reed and rice straw powders by 30.4% and 15.9%, respectively. The results suggest that Cel9K can be used to enhance the enzymatic conversion of lignocellulosic biomass to reducing sugars as an additive.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.

Strain Improvement of Penicillium verruculosum for High Cellulase Production by Induced Mutation (섬유소분해효소 생산증진을 위한 Penicillium verruculosum의 균주개량)

  • 정기철
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.388-395
    • /
    • 1987
  • In order to obtain a regulatory mutant strain with high cellulase activity, a newly isolated Penicillium verrculosum, strain F-3 was used as parental strain since it was proved to be an efficient cellulase producer. A number of experiments were conducted to determine the optimum conditions to in-duce mutagenesis and isolate the desirable mutant strains. Out of several restriction compounds tested, 1.5% oxgall was found to be most effective to restrict the colony size by suppressing overgrowth. Derepression of catabolites was employed as a criterion in selecting mutant strains with high cellulase productivity. Production of cellulase by Penicillium venculosum F-3 was suppressed when cultured on the media with more than 1% of glucose or glycerol. It was found that either irradiation with UV light for 19 mins or treatment with nitrosoguanidine at 200$\mu\textrm{g}$/m1 for 60 mins, induced mutagenesis at desired level, when the survival rate of the spore was 0.2% and 48%, respectively. Three mutant strains of F-3, UV-9, UV-10, and NTG-3 that had the highest cellulase productivity were finally selected, based on filter paper degradation rate, size of clearing zone on the screening plate and cellulase activity in the medium containing cellulose powder. When the mutant strains were compared with parental strain F-3, on the KC-M-W medium containing cellulose powder, the filter paper activities of UV-9, UV-10, and NTG-3 were increased by 34%, 55%, and 41%, respectively. However, the assimilation of cellobiose octaacetate by UV-9 or NTG-3 was markedly reduced. When the mutant UV-10 was grown on cellobiose octaacetate medium (CCA-4) in shaking flasks, the cellulase activities of the mutant increased by 20 to 50% compared to the parental strain. Excreation of soluble protein from the mutant also elevated up to 30%. The mutant also constitutively produced both CMCase and $\beta$-glucosidase, though at relatively low level, in the presence of glucose or cellobiose as carbon sources.

  • PDF

Effect of Sunlight, Incandescent, Fluorescent, and Ultraviolet Lights on the Oxidation of Edible Soybean Oil (식용유지(食用油脂)의 산화과정(酸化過程)에 대한 일사광선(日射光線), 백열등광선(白熱燈光線), 형광등광선(螢光燈光線) 및 살균등광선(殺菌燈光線)의 촉진작용(促進作俑) 대하여)

  • Koo, Ja-Hyun;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.178-184
    • /
    • 1971
  • Samples of refined soybean oil were irradiated with lights from a 20-watt incandescent tungsten lamp, a 20-watt fluorescent daylight type lamp, a 20-watt low-pressure mercury vapor germicidal lamp, and direct sunlight for an experimental period of 147 days. Some samples were stored in a dark room throughout the period as a control. The peroxide values of all samples were measured every week. The induction period of the samples was arbitrarily taken as the time required for the samples to reach a peroxide value of 15. The induction period of the control was estimated at 198 days. Those of the samples irradiated with the incandescent light, the fluorescent light, the ultraviolet light, and the sunlight were estimated at 196, 119, 52 and 6 days, respectively. The sunlight showed by far the strongest prooxidant activity whereas the incandescent light showed the weakest but distinct prooxidant activity. The small temperature differences observed among the various samples throughout the experimental period did not seem to affect the oxidation rates of the irradiated samples in any significant way.

  • PDF

Effects of Increasing Inclusion Levels of Rumen Cellulolytic Bacteria Culture on In vivo Ruminal Fermentation Patterns in Hanwoo Heifers (반추위 섬유소분해 박테리아 배양액의 투여 수준에 따른 한우 반추위 발효에 미치는 영향)

  • Park, Joong-Kook;Jeong, Chan-Sung;Park, Do-Yeun;Kim, Hyun-Cheol;Lee, Seung-Cheol;Kim, Chang-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • This experiment was conducted to observe the effects of anaerobic cellulolytic bacteria culture (Ruminococcus flavefaciens H-20 and Fibrobactor succinogenes H-23) on in vivo ruminal fermentation characteristics in Hanwoo heifers. Four ruminally cannulated Hanwoo heifers ($221\pm7.5kg$) receiving a basal diet containing 3 kg of mixture hay (tall fescue and ochardgrass) and 2 kg of concentrate per day were in a $4\times4$ Latin square with 21-day periods. Treatments were the basal diet without the culture additive (control), the basal diet plus 50 ml/day of bacteria culture of H-20 and H-23 (1%), 150 ml/day of H-20 and H-23 (3%), and 250 ml/day of H-20 and H-23 (5%). In the whole experimental periods, ruminal pH did not differ between treatments. However, the concentration of ruminal ammonia-N was increased in the 3% treatment relative to control and the 1% treatment at 1 hr post-feeding (p<0.05). Avicelase and CMCase (carboxymethyl cellulase) activities in rumen fluid showed no significant difference among treatments. However, xylanase activity was higher in the 5% (119.49, xylose ${\mu}mol$/ml/min) than the 3% treatment (71.02, xylose ${\mu}mol$/ml/min) at 0 hr post-feeding (p<0.05). Concentrations of ruminal total VFA, acetate, propionate and valerate were unaffected by treatments, while butyrate was higher in the 3% treatment (24.48 mM) than control (15.71 mM) at 1 hr post-feeding (p<0.05). Results indicate that minimum 3% inclusion of cellulolytic bacteria cultures improved ruminal fermentation, especially ammonia-N concentration and butyric acid production.

Effect of Ethanolic Extract of Schizandra chinensis for the Delayed Ripening Kimchi Preparation (오미자(Schizandra chinensis) 추출물이 김치의 과숙억제에 미치는 영향)

  • Moon, Young-Ja;Park, Sun;Sung, Chang-Keun
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • This study mainly focused on to investigate the effects of Schizandra chinensis on the growth of a bacterium, CS6 which was isolated from kimchi. CS6 was final]y identified to lactobacillus plantarum that caused acidification of kimchi. The ethanolic extract of Schizandra chinensis(EES) inhibited the growth of L. plantarum. Minimum inhibition concentration of crude EES on L. plantarum was 62.5mg/$m\ell$. In broth culture, 5$\mu\textrm{g}$/$m\ell$ of EES completely inhibited the growth of L. plantarum during fermentation. The addition of 0.4% of EES has no apparent effect on quality including the taste and color on kimchi. It was expected that EES-containing kimchi could extend the period of preservation. Analysis of organic acids in water fractions of EES was carried out by HPLC. It is apparent that antimicrobial active fractions contained the highest concentration of succinic acid, a little tartaric acid and malic acid. Among these organic acids, succinic acid showed the strong inhibitory effect against L. plantarum CS6 in vitro. Succinic acid-containing kimchi with a concentration of 0.4 and 0.5% had the inhibitory effect on growth of L. plantarum. Inhibitory effect of EES on amylase, cellulase and pectinase was also tested. In conclusion, the present experiment demonstrated that EES inhibited the growth of L. plantarum, and various enzyme activity. EES-containing kimchi was sustained the hardness, and initial acidity during fermentation. EES was considered as the possible additive of kimchi process and EES added in kimchi increase the quality, and storage period of kimchi.

Effects of Replacing Rice Straw with By-products of Medical Herbs on the in vitro Fermentation Characteristics (한약재 부산물의 대체 수준이 in vitro 발효특성에 미치는 영향)

  • Lee, Shin-Ja;Shin, Nyeon-Hak;An, Jung-Jun;Chu, Gyo-Moon;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.69-79
    • /
    • 2011
  • This study was conducted to estimate effects of by-products of medical herbs replacing rice straw on in vitro fermentation characteristics. Each trial was composed of five treatments including medical herbs : rice straw (%) = 20 : 80 (T1), 40 : 60 (T2), 50 : 50 (T3), 100 : 0 (T4) and the control. Each treatment had eight fermentation times (3, 6, 9, 12, 24, 36, 48 and 72 hours) with three replications. The gas production and DM degradation were significantly (P<0.05) increased by supplementation, especially T4, during the whole fermentation periods. Methane production increased along with addition of by-products similar to the gas production and DM degradation. The pH values ranged from 5.39 to 6.80 and were significantly (P<0.05) decreased by supplementation of by-products of medical herbs. Microbial growth rates reached the peak at between 36 and 48h, thereafter tended to decrease. Although there were no significant differences in the enzyme activities, there was a tendency of increase in T4 treatment. From above results, the replacement levels, particularly 100% replacement of rice straw by by-products of medical herbs, resulted in improving the in vitro fermentation characteristics such as increasing gas production, microbial growth and DM degradation. Also it may help digestion by increasing enzyme activities.