• 제목/요약/키워드: CMAC network

검색결과 21건 처리시간 0.028초

진화 스트레티지를 이용한 CMAC 망 최적 설계 (Optimal Design of CMAC network Using Evolution Strategies)

  • 이선우;김상권;김종환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.271-274
    • /
    • 1997
  • This paper presents the optimization technique for design of a CMAC network by using an evolution strategies(ES). The proposed technique is designed to find the optimal parameters of a CMAC network, which can minimize the learning error between the desired output and the CMAC network's as well as the number of memory used in the CMAC network. Computer simulations demonstrate the effectiveness of the proposed design method.

  • PDF

디지털 시뮬레이션에 의한 CMAC 신경망 직류전동기 속도 제어기 설계 (Design for CMAC Neural Network Speed Controller of DC Motor by Digital Simulations)

  • 최광호;조용범
    • 전력전자학회논문지
    • /
    • 제6권3호
    • /
    • pp.273-281
    • /
    • 2001
  • 본 논문에서는 비선형 시스템을 제어하기 위한 CMAC 신경망을 제안한다. CMAC 신경망은 사람의 소뇌를 모방한 신경망으로서 복잡한 비선형 함수의 해를 수치적인 연산에 의해 구하지 않고 table look-up방식을 이용하기 때문에 학습이 타 신경망에 비해 월등히 빠르고 용이하며 제어신호를 출력하기 위한 계산시간이 거의 필요치가 않다. 본 논문에서는 제안한 제어기 구조의 타당성을 증명하기 위해 간단한 비선형 함수와 직류전동기 속도제어에 대한 CMAC 제어기를 시뮬레이션을 통하여 학습 제어기의 안정성 및 추적에러의 감소를 확인하였다. 또한 제안 CMAC 제어기를 실시간 장력제어에 적용하여 직류전동기의 속도를 제어하므로 시뮬레이션 값과 비슷한 장력제어를 보인으로서 유용성을 입증하였다.

  • PDF

CMAC 신경망을 이용한 지진시 구조물의 진동제어 (Active Vibration Control of Structure using CMAC Neural Network under Earthquake)

  • 김동현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.509-514
    • /
    • 2000
  • A structural control algorithm using CMAC(Cerebellar Model Articulation Controller) neural network is proposed Learning rule for CMAC is derived based on cost function. Learning convergence of CMAC is compared with MLNN(Multilayer Neural Network). Numerical examples are shown to verify the proposed control algorithm. Examples show that CMAC can be applicable to structural control with fast learning speed.

  • PDF

CMAC 신경회로망을 이용한 가솔린 분사 제어 시스템에 관한 연구 (The injection petrol control system about CMAC neural networks)

  • 한아군;탁한호
    • 한국정보통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.395-400
    • /
    • 2017
  • 본 논문에서는 산소 센서를 이용하여 CMAC 신경회로망 학습제어에 의한 차량의 연료분사 제어방법에 대해 논한다. 기본 차량 내연기관과 연료 분사 제어시스템의 동역학적인 비선형성으로 인하여 불연속적인 연로를 분사한다. 정밀 연료 분사량 제어에 어려움을 발생시키기 때문에 엔진성능은 저하된다. 본 연구에서는 CMAC 신경회로망을 이용한 연료 분사시스템을 제안한다. CMAC 신경회로망은 매우 넓은 범위의 함수로부터 비선형 관계를 학습 할 수 있고, 학습이 빠르며, 수렴 특성을 가지고 있다. 그리고 산소 센서의 출력특성을 파악하여 연료분사 속도를 계산해서 설정된 공연비 값을 유지시켜준다. 게다가 기존 가솔린 엔진의 구조변경이 없이 어떤 상황에서도 공연비를 정밀하게 제어할 수 있으며, 배기가스 배출량을 절감시킬 수 있다. 시뮬레이션을 통해 일반적인 차량의 제어 방법과 비교 분석하였고, 제안된 방법이 차량의 연비 향상과 친환경 성능 등에 더 효과적임을 확인하였다.

A CMAC network based controller

  • Koo, Keun-Mo;Kim, Jong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.634-637
    • /
    • 1994
  • This paper presents a CMAC network based controller on the basis of Lyapunov theory. CMAC network is employed to approximate and to compensate the uncertainties induced by inaccurate modelling of the system. For the improvement of robustness under the bounded disturbances and the approximation error of the CMAC, the adaptation scheme with a deadzone and an additional control input are developed.

  • PDF

자율조직 CMAC 신경망에 의한 비선형 시계열 예측 (Prediction of Nonlinear Sequences by Self-Organized CMAC Neural Network)

  • 이태호
    • 융합신호처리학회논문지
    • /
    • 제3권4호
    • /
    • pp.62-66
    • /
    • 2002
  • SOCMAC 신경망에 의하여 Mackey-Glass의 비선형 시계열 예측을 시도하였다 다차원 연속 입력 변수를 가지는 문제는 요구되는 기억용량의 규모가 너무 커서 CMAC에서는 일반적으로 취급이 곤난한 대상이었으나 SOCMAC에서는 이것이 가능함을 보였다. 또한 학습과정에서 수용영역(receptive field)을 가변으로 하는 개선된 방법을 제시하였다. 예측오차는 TDNN(time-delayed neural network)이나 BP(back-propagation) 수준이었다.

  • PDF

CMAC 신경망 외란관측기를 이용한 유연관절 로봇의 강인 추적제어 (Robust Tracking Control of a Flexible Joint Robot System using a CMAC Neural Network Disturbance Observer)

  • 김은태
    • 전자공학회논문지SC
    • /
    • 제40권5호
    • /
    • pp.299-307
    • /
    • 2003
  • CMAC 신경망은 지역적 구조로 비선형제어에 적용 시 좋은 성능을 보이는 것이 잘 알려져 있다. 본 논문에서는 CMAC 신경망 외란관측기와 제어기를 제안하고 이를 유연관절 로봇의 강인 추적제어에 적용하도록 한다. 이때 CMAC 신경망 외란관측기는 기계시스템에서 발생하는 파라미터의 불확실성과 외부 외란을 상쇄하는 역할을 한다. 컴퓨터 모의 실험을 통하여 본 논문에서 제안한 CMAC 외란관측기를 유연관절 로봇의 제어에 적용하고 그 성능을 확인하도록 한다.

운반차-막대 시스템을 위한 적응비평학습에 의한 CMAC 제어계 (CMAC Controller with Adaptive Critic Learning for Cart-Pole System)

  • 권성규
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.466-477
    • /
    • 2000
  • 이 논문에서는 운반차-막대 시스템을 제어하기 위한 CMAC을 이용한 적응 학습 제어계를 개발하기 위하여, 적응비평학습을 이용하는 신경망 제어계에 관한 여러 연구 문헌들을 조사하고, ASE 요소를 이용하는 적응비평학습 기법을 CMAC을 바탕으로 하는 제어계에 통합하였다. 적응비평학습 기법을 CMAC에 구현하는데 있어서의 변환 문제를 검토하고, CMAC 제어계와 ASE 제어계가 운반차-막대 문제를 학습하는 속도를 비교하여, CMAC 제어계의 학습 속도가 빠르기는 하지만, 입력 공간의 더 넓은 영역에 대해서는 학습효과를 발휘하지 못하는 문제의 관점에서 적응비평학습 방법이 CMAC의 특성과 어울리는지를 고찰하였다.

  • PDF

Mobile WiMAX 네트워크에서 공유 인증 정보를 이용한 분산 서비스 거부 공격 방어 (Prevention Scheme of DDoS Attack in Mobile WiMAX Networks Using Shared Authentication Information)

  • 김영욱;박세웅
    • 한국통신학회논문지
    • /
    • 제34권2B호
    • /
    • pp.162-169
    • /
    • 2009
  • 메시지 인증 코드 (Message Authentication Code, MAC)는 메시지의 변조를 확인하기 위하여 사용되고 Mobile WiMAX 네트워크에서는 관리 메시지 (management message)의 인증을 위하여 Cipher-based 메시지 인증 코드 (Cipher-based MAC, CMAC)를 사용한다. 이 때 계산된 CMAC값 128 비트 중 하위 64 비트만을 사용하고 상위 64 비트 값은 잘라내어 사용하지 않는다. 본 연구에서는 이렇게 사용되지 않는 CMAC의 상위 64 비트를 공유 인증 정보 (Shared Authentication Information, SAI)라 하고 Mobile WiMAX 네트워크에서 유휴 모드 (idle mode) 상의 보안 취약점을 이용한 분산 서비스 거부 공격을 방어하는 수단으로 사용한다. 공유 인증 정보는 CMAC 값 중 사용되지 않는 64 비트를 사용하는 것이기 때문에 CMAC 값과 같은 보안성을 제공하며 CMAC 값을 계산하는 과정에서 얻을 수 있기 때문에 추가적인 계산이 필요 없다. 또한 사용하기 전까지 무선 구간에서 전송되지 않아 노출될 염려가 없으며 CMAC 키를 아는 기지국, 접근 서비스망 게이트웨이 (Access Service Network Gateway, ASN GW), 무선 단말 사이에서만 공유되기 때문에 안전하다. 이런 특성들로 인하여 공유 인증 정보는 분산 서비스 거부 공격 시에 기지국과 접근 서비스망 게이트웨이의 부하를 줄임으로써 효율적으로 분산 서비스 거부 공격을 방어할 수 있다.

A Reinforcement Learning with CMAC

  • Kwon, Sung-Gyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권4호
    • /
    • pp.271-276
    • /
    • 2006
  • To implement a generalization of value functions in Adaptive Search Element (ASE)-reinforcement learning, CMAC (Cerebellar Model Articulation Controller) is integrated into ASE controller. ASE-reinforcement learning scheme is briefly studied to discuss how CMAC is integrated into ASE controller. Neighbourhood Sequential Training for CMAC is utilized to establish the look-up table and to produce discrete control outputs. In computer simulation, an ASE controller and a couple of ASE-CMAC neural network are trained to balance the inverted pendulum on a cart. The number of trials until the controllers are established and the learning performance of the controllers are evaluated to find that generalization ability of the CMAC improves the speed of the ASE-reinforcement learning enough to realize the cartpole control system.