• Title/Summary/Keyword: CLASSIFICATION ANALYSIS

Search Result 8,013, Processing Time 0.04 seconds

Gait Type Classification Using Pressure Sensor of Smart Insole

  • Seo, Woo-Duk;Lee, Sung-Sin;Shin, Won-Yong;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2018
  • In this paper, we propose a gait type classification method based on pressure sensor which reflects various terrain and velocity variations. In order to obtain stable gait classification performance, we divide the whole gait data into several steps by detecting the swing phase, and normalize each step. Then, we extract robust features for both topographic variation and speed variation by using the Null-LDA(Null-Space Linear Discriminant Analysis) method. The experimental results show that the proposed method gives a good performance of gait type classification even though there is a change in the gait velocity and the terrain.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Design and Implementation of an Automated Fruit Quality Classification System

  • Choi, Han Suk
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.37-43
    • /
    • 2018
  • Most of fruit quality classification has been done by time consuming, inaccurate and intensive manual labor. This study proposed an automated fruit grading system based on appearances and internal flavors. In this study, image processing technique and a weight checker were used to measure the value of appearance features and the near infrared spectroscopy analysis method was used to estimate the value of internal flavors. Additionally, I suggested 8x8x5x5 ANN based fruit quality classifier model to grade fruits quality. The proposed automated fruit quality classification system is expected to be very beneficial for many farms where heavy manual labor is usually needed for fruit quality classification.

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.

A Study on Applicability of Machine Learning for Book Classification of Public Libraries: Focusing on Social Science and Arts (공공도서관 도서 분류를 위한 머신러닝 적용 가능성 연구 - 사회과학과 예술분야를 중심으로 -)

  • Kwak, Chul Wan
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.1
    • /
    • pp.133-150
    • /
    • 2021
  • The purpose of this study is to identify the applicability of machine learning targeting titles in the classification of books in public libraries. Data analysis was performed using Python's scikit-learn library through the Jupiter notebook of the Anaconda platform. KoNLPy analyzer and Okt class were used for Hangul morpheme analysis. The units of analysis were 2,000 title fields and KDC classification class numbers (300 and 600) extracted from the KORMARC records of public libraries. As a result of analyzing the data using six machine learning models, it showed a possibility of applying machine learning to book classification. Among the models used, the neural network model has the highest accuracy of title classification. The study suggested the need for improving the accuracy of title classification, the need for research on book titles, tokenization of titles, and stop words.

Analysis of classification for The Rural Experience Village Using GIS (지리정보시스템을 이용한 농촌체험마을 유형화분석에 관한 연구)

  • Joo, Ho-Gil;Park, Jin-Sun;Yoon, Seong-Soo;Rhee, Shin-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.127-130
    • /
    • 2003
  • The purpose of this paper was to the classification of the rural area of a development plan advance of the rural experience village. For the purpose we used the multivariatial analysis and GIS chose the chungchungbukdo as the study area. We drew the agriculture classification of 6 results. We expressed local characteristics. We could present and the basis data even though we established a village experience village development plan. The possibility of an automatic processing system setup of the classification analysis for the rural experience village was presented.

  • PDF

Fast classification of fibres for concrete based on multivariate statistics

  • Zarzycki, Pawel K.;Katzer, Jacek;Domski, Jacek
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • In this study engineered steel fibres used as reinforcement for concrete were characterized by number of key mechanical and spatial parameters, which are easy to measure and quantify. Such commonly used parameters as length, diameter, fibre intrinsic efficiency ratio (FIER), hook geometry, tensile strength and ductility were considered. Effective classification of various fibres was demonstrated using simple multivariate computations involving principal component analysis (PCA). Contrary to univariate data mining approach, the proposed analysis can be efficiently adapted for fast, robust and direct classification of engineered steel fibres. The results have revealed that in case of particular spatial/geometrical conditions of steel fibres investigated the FIER parameter can be efficiently replaced by a simple aspect ratio. There is also a need of finding new parameters describing properties of steel fibre more precisely.

Shape-Based Classification of Clustered Microcalcifications in Digitized Mammograms

  • Kim, J.K.;Park, J.M.;Song, K.S.;Park, H.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2000
  • Clustered microcalcifications in X-ray mammograms are an important sign for the diagnosis of breast cancer. A shape-based method, which is based on the morphological features of clustered microcalcifications, is proposed for classifying clustered microcalcifications into benign or malignant categories. To verify the effectiveness of the proposed shape features, clinical mammograms were used to compare the classification performance of the proposed shape features with those of conventional textural features, such as the spatial gray-leve dependence method and the wavelet-based method. Image features extracted from these methods were used as inputs to a three-layer backpropagation neural network classifier. The classification performance of features extracted by each method was studied by using receiver operating-characteristics analysis. The proposed shape features were shown to be superior to the conventional textural features with respect to classification accuracy.

  • PDF

Fileless cyberattacks: Analysis and classification

  • Lee, GyungMin;Shim, ShinWoo;Cho, ByoungMo;Kim, TaeKyu;Kim, Kyounggon
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.332-343
    • /
    • 2021
  • With cyberattack techniques on the rise, there have been increasing developments in the detection techniques that defend against such attacks. However, cyber attackers are now developing fileless malware to bypass existing detection techniques. To combat this trend, security vendors are publishing analysis reports to help manage and better understand fileless malware. However, only fragmentary analysis reports for specific fileless cyberattacks exist, and there have been no comprehensive analyses on the variety of fileless cyberattacks that can be encountered. In this study, we analyze 10 selected cyberattacks that have occurred over the past five years in which fileless techniques were utilized. We also propose a methodology for classification based on the attack techniques and characteristics used in fileless cyberattacks. Finally, we describe how the response time can be improved during a fileless attack using our quick and effective classification technique.

Selection of markers in the framework of multivariate receiver operating characteristic curve analysis in binary classification

  • Sameera, G;Vishnu, Vardhan R
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.79-89
    • /
    • 2019
  • Classification models pertaining to receiver operating characteristic (ROC) curve analysis have been extended from univariate to multivariate setup by linearly combining available multiple markers. One such classification model is the multivariate ROC curve analysis. However, not all markers contribute in a real scenario and may mask the contribution of other markers in classifying the individuals/objects. This paper addresses this issue by developing an algorithm that helps in identifying the important markers that are significant and true contributors. The proposed variable selection framework is supported by real datasets and a simulation study, it is shown to provide insight about the individual marker's significance in providing a classifier rule/linear combination with good extent of classification.