• Title/Summary/Keyword: CL response

Search Result 600, Processing Time 0.027 seconds

Reverse Micellar Extraction of Fungal Glucoamylase Produced in Solid-State Fermentation Culture

  • Paraj, Aliakbar;Khanahmadi, Morteza;Karimi, Keikhosro;Taherzadeh, Mohammad J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1690-1698
    • /
    • 2014
  • Partial purification of glucoamylase from solid-state fermentation culture was, firstly, investigated by reverse micellar extraction (RME). To avoid back extraction problems, the glucoamylase was kept in the original aqueous phase, while the other undesired proteins/enzymes were moved to the reverse micellar organic phase. The individual and interaction effects of main factors (i.e., pH and NaCl concentration in the aqueous phase, and concentration of sodium bis-2-ethyl-hexyl-sulfosuccinate (AOT) in the organic phase) were studied using response surface methodology. The optimum conditions for the maximum recovery of the enzyme were pH 2.75, 100 mM NaCl, and 200 mM AOT. Furthermore, the optimum organic to aqueous volume ratio ($V_{org}/V_{aq}$) and appropriate number of sequential extraction stages were 2 and 3, respectively. Finally, 60% of the undesired enzymes including proteases and xylanases were removed from the aqueous phase, while 140% of glucoamylase activity was recovered in the aqueous phase and the purification factor of glucoamylase was found to be 3.0-fold.

Stress Adaptation of Escherichia coli as Monitored via Metabolites by Using Two-Dimensional NMR Spectroscopy

  • Chae, Young Kee;Kim, Seol Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.102-108
    • /
    • 2017
  • Escherichia coli responds to ever-changing external and internal stresses by rapidly adjusting its physiology for better survival. This adjustment occurs at all levels including metabolites as well as mRNAs and proteins. Although there has been many reports describing E. coli's adaptation to various stresses regarding transcriptomics or proteomics, only a few investigations have been reported regarding this adaptation viewed from metabolites' perspective. We applied four different types of stresses at four different doses as imposed by NaCl, sorbitol, ethanol, and pH to investigate the similarities or differences among the stresses, and which stress causes the largest perturbation of the metabolite composition. We profiled the metabolites under such external stresses by using two-dimensional NMR spectroscopy and identified 39 metabolites including amino acids, sugars, organic acids, and nucleic acids. According to our statistical analysis, the osmotic stress caused by sorbitol differentiated itself from others, while NaCl showed the largest dose dependent metabolic perturbations. We hope this work will form a foundation on which an approach to a successful protein production is systematically provided by a favorable metabolic environment by imposing proper external stresses.

Salt Tolerance of Vigna angularis during Germination and Early Seedling Growth

  • Lee, Hee-Kyung;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The present study was undertaken in investigate the response to salinity and effect of plant growth regulators and proline under salinity stress on the germination and seedling growth of Vigna angularis. The protective effect of external Ca2+ on root elongation under saline conditions was also investigated. The seed germination of Vigna angularis decreased with an increase in salinity. The growth regulators GA3 was more effective than kinetin. At a higher salinity, low concentrations of kinetin and high concentrations of GA3 were more effective. The external application of proline and betaine improved germination under saline conditions. At a low salinity proline and betaine alleviated the salinity-induced inhibition of germination, yet at higher NaCl concentrations, proline and betaine were both ineffective. Exposure to salinity during germination was accompanied by an increase in the proline content, thereby suggesting that one compatible solute in the germinating seed would seem to be proline. The inhibition of germination by high NaCl concentrations was relatively more severe in scarified seeds than in intact seeds, indicating that the seed coat acts as a partial barrier to an Na2+ ameliorated the adverse effect of salinity stress.

  • PDF

Cutaneous Leishmaniasis of the Eyelids: A Case Series with Molecular Identification and Literature Review

  • Mohammadpour, Iraj;Motazedian, Mohammad Hossein;Handjani, Farhad;Hatam, Gholam Reza
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.787-792
    • /
    • 2016
  • Cutaneous leishmaniasis (CL) is a protozoan disease which is endemic in Iran. It is transmitted by the Phlebotomus sand fly. The eyelid is rarely involved possibly because the movement of the lids impedes the sand fly from biting the skin in this region. Here, we report 6 rare cases of eyelid CL. The patients were diagnosed by skin scraping, culture, and PCR from the lesions. Skin scraping examination showed Leishmania spp. amastigotes in the cytoplasm of macrophages. Culture examination was positive for Leishmania spp. PCR was positive for Leishmania major and Leishmania tropica. The lesions were disguised as basal cell carcinoma, chalazion, hordeolum, and impetigo. The patients were treated with intramuscular meglumine antimoniate (20 mg/kg/day) for at least 3 weeks. They showed a dramatic response, and the lesions almost completely disappeared. We emphasized the importance of clinical and diagnostic features of lesions, characterized the phylogenetic relationship of isolated parasites, and reviewed the literature on ocular leishmaniasis.

Osmoregulation and mRNA Expression of a Heat Shock Protein 68 and Glucose-regulated Protein 78 in the Pacific oyster Crassostrea gigas in Response to Salinity Changes

  • Jo, Pil-Gue;Choi, Yong-Ki;An, Kwang-Wook;Choi, Cheol-Young
    • Journal of Aquaculture
    • /
    • v.20 no.4
    • /
    • pp.205-211
    • /
    • 2007
  • Stress-inducible proteins may function in part as molecular chaperones, protecting cells from damage due to various stresses and helping to maintain homeostasis. We examined the mRNA expression patterns of a 68-kDa heat shock protein (HSP68) and 78-kDa glucose-regulated protein (GRP78) in relation to physiological changes in Pacific oyster Crassostrea gigas under osmotic stress. Expression of HSP68 and GRP78 mRNA in the gill significantly increased until 48 h in a hypersaline environment (HRE) and 72 h in a hyposaline environment (HOE), and then decreased. Osmolality and the concentrations of $Na^+$, $Cl^-$, and $Ca^{2+}$ in the hemolymph of HRE oysters significantly increased until 72 h (the highest value) and then gradually decreased; in HOE oysters, these values significantly decreased until 72 h (the lowest value), and then increased. These results suggest that osmolality and $Na^+$, $Cl^-$, and $Ca^{2+}$ concentrations were stabilized by HSP68 and GRP78, and indicate that these two stress-induced proteins play an important role in regulating the metabolism and protecting the cells of the Pacific oysters exposed to salinity changes.

Statistical Optimization for Improved Production of Cyclosporin A in Solid-State Fermentation

  • Survase, Shrikant A.;Annapure, Uday S.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1385-1392
    • /
    • 2009
  • This work evaluates the effect of different amino acids on production of Cyclosporin (CyA) production in solid-state fermentation that was previously optimized for different fermentation parameters by one factor at-a-time for the maximum production of CyA by Tolypocladium inflatum MTCC557. Based on the Plackett-Burman design, glycerol, ammonium sulfate, $FeCl_3$, and inoculum size were selected for further optimization by response surface methodology (RSM). After identifying effective nutrients, RSM was used to develop mathematical model equations, study responses, and establish the optimum concentrations of the key nutrients for higher CyA production. It was observed that supplementation of medium containing (% w/w) glycerol, 1.53; ammonium sulfate, 0.95; $FeCl_3$, 0.18; and inoculum size 6.4 ml/5g yielded a maximum of 7,106 mg/kg as compared with 6,480 mg CyA/kg substrate using one factor at-a-time. In the second step, the effect of amino acids on the production of CyA was studied. Addition of $_L$-valine and $_L$-leucine in combination after 20 h of fermentation resulted in maximum production of 8,166 mg/kg.

Synthesis of Azo-functionalized Calix[4]arenes and Its Application to Chloride-selective Electrode as Ionophores

  • Lee, Hyo-Kyoung;Yeo, Hee-Kyoung;Park, Duck-Hee;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1737-1741
    • /
    • 2003
  • Azo-functionalized calix[4]arenes as ionophores for chloride-selective electrode, 5,11,17,23-Tetra-tert-butyl-25,27-bis[(N,N-dimethyl-aniline-azo-phenylthioureido)ethyl]oxy-26,28-dihydroxycalix[4]arene (4a) and 5,11,17,23-Tetra-tert-butyl-25,27-bis[(N,N-dimethyl-aniline-azo-phenylthioureido)ethyl]oxy-26,28-dimethoxycalix[4]arene (4b) were synthesized. The PVC membrane electrode based on azo-functionalized calix[4]arene 4a with o-NPOE exhibits a linear stable response over a wide concentration range ($1.5{\times}10^{-4}-1.0{\times}10^{-1}$) with a slope of -52.0 mV/decade and a detection limit of log[$Cl^-$] = -4.02. This ionophore-based membrane exhibited improved selectivity for chloride anion compared with classical Hofmeister series.

Development of Methane Gas Sensor by Various Powder Preparation Methods

  • Min, Bong-Ki;Park, Soon-Don;Lee, Sang-Ki
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.125-130
    • /
    • 1999
  • After $SnO_2$ fine powder by precipitation method, Ca as crystallization inhibitor and Pd as catalyst were added to $SnO_2$ raw material by various methods. Thick film device was fabricated on the alumina substrate by mixing ethylene glycol and such mixed powders. The sensing characteristics of the device for methane gas were investigated. The most excellent gas sensing property was shown by the thick film device fabricated by Method 3 in which Ca and Pd doped $SnO_2$ powder is prepared by mixing $SnO_2$ powder, 0.1 wt% Ca acetate and 1 wt% $PdCl_2$ in deionized water and by calcining the mixture, after $Sn(OH)_4$ is dried at $110^{\circ}C$ for 36h. The sensitivity of the sensor fabricated with $SnO_2$-0.1 wt%Ca acetate-1wt%$PdCl_2$ powder heat-treated at $700^{\circ}C$ for 1h was about 86% for 5,000 ppm methane in air at $350^{\circ}C$ of the operating temperature. Response time and recovery were also excellent.

  • PDF

Development of Wheat Breeding Material Mediated wide Hybridization Response to Climate Change

  • Seong-Wook Kang;Ji-Yoon Han;Seong-Woo Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.293-293
    • /
    • 2022
  • This study is to develop new wheat breeding material through wide hybridization with wild species harboring useful characteristics such as salt, heat, and drought tolerance. Leymus mollis, wild rye was used to improve wheat genetic quality. L. mollis, is a perennial plant harboring tolerance against salt, heat, and drought because L. mollis distributes on the seaside. The F1 hybrids were produced by crossing between common wheat (Triticum aestivum L., Chinese Spring) and L. mollis. Genomic in situ hybridization revealed that the F1 hybrids have L. mollis genome. For the evaluation of salt and drought tolerance, seeds from the F2 were used. Under 2% NaCl solution, the F3 wheat-Leymus addition plants with salt tolerance showed more tillering and longer roots than other F3 plants without salt tolerance. Also, the F3 plants with salt tolerance showed better shallow-rooted than other F3 plants without salt tolerance. Finally, the F3 plants with salt tolerance made seed-setting under 2% NaCl condition, but other F3 plants without salt tolerance were not. Under drought conditions, the F3 plants with drought tolerance showed longer culm and spike length than other F3 plants without drought tolerance and even those of Chinese Spring under well-water conditions. We evaluated and selected the F3 plants with salt or drought tolerance for generation advancement.

  • PDF

Fabrication of a superheated emulsion based on Freon-12 and LiCl suitable for thermal neutrons detection

  • Sara Sadat Madani Kouchak;Dariush Rezaei Ochbelagh;Peiman Rezaeian;Majid Abdouss
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1425-1430
    • /
    • 2024
  • This study develops superheated emulsion detectors that are both sensitive to fast neutrons, and thermal neutrons owing to the exergonic 63Li(n, α)31H capture reaction caused by the 6Li-containing compound dispersed throughout the gel-like medium. The experimental research was conducted on two SEDs. One detector was an ordinary Freon-12 detector and the other was a Freon-12 detector containing 3.4 % (by weight) LiCl. In order to investigate the sensitivity of lithium-containing SEDs to thermal neutrons, two types of SEDs were simultaneously exposed to various flux levels of thermal neutrons from 241Am-Be neutron source inside a cylindrical tank filled with water. A Boron-lined proportional counter was used to estimate the thermal neutron flux and the relevant MCNP code was developed for flux and dose calculations in the prepared set-up around 241Am-Be source. The results demonstrate that there is a proportional relationship between the variations of SED response and the change in thermal neutron flux and dose. Also, the sensitivity of SED was estimated.