• Title/Summary/Keyword: CIGS PV module

Search Result 6, Processing Time 0.024 seconds

Comparison of Performance Analysis of the Ventilated and Non-­ventilated CIGS BIPV Units (환기 유무에 따른 CIGS BIPV 커튼월 유닛의 성능 비교 분석)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.47-57
    • /
    • 2017
  • CIGS thin film solar cells are technically suitable for BIPV applications than regularly used crystalline silicon solar cells. Particularly, CIGS PV has lower temperature coefficient than crystalline silicon PV, thus decrease in power generation is lowered in CIGS PV. Moreover, CIGS PV can decrease shading loss when applied to the BIPV system, and the total annual power generation is higher than crystalline silicon. However, there are few studies on the installation factors affecting the performance of BIPV system with CIGS module. In this study, BIPV curtain wall unit with CIGS PV module was designed. To prevent increase of temperature of CIGS PV module by solar radiation, ventilation was considered at the backside of the unit. The thermal specification and electrical performance of CIGS PV of the ventilated unit was analyzed experimentally. Non-ventilated unit was also investigated and compared with ventilated unit. The results showed that the average CIGS temperature of the ventilated curtain wall unit was $6.8^{\circ}C$ lower than non-ventilated type and the efficiency and power generation performance of ventilated CIGS PV on average was, respectively, about 6% and 5.8% higher than the non-ventilated type.

Comparative Study on Performance of Grid-Connected Photovoltaic Modules in Tropical Monsoon Climate under Thailand condition (태국 열대몬순기후 조건에서 PV모듈 기술별 성능특성 비교 연구)

  • Kim, Seung Duck;Koh, Byung Euk;Park, Jin Hee;Cheon, Dae In
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 2014
  • The performances of three different types of photovoltaic (PV) module technologies namely, copper-indium-diselenide (CIGS), mono-crystalline silicon (mo-Si) and amorphous silicon (a-Si) have been comparatively studied in the grid-connected system for more than a year under the tropical monsoon climate of Thailand. The yields, performance ratios and system efficiencies for the respective PV module technologies have been calculated and a comparison is presented here. The performance ratios of the initial operation year for CIGS showed highest among the compared technologies under Thailand climate conditions by marking 97.0% while 89.6% for a-Si and 81.5% for mo-Si. Although mo-Si has shown highest efficiencies all over the period, under the testing conditions, the operating efficiency of mo-Si was down-graded from its reference value mainly due to high operating temperature and the efficiency of the tested CIGS module was also found as high as that of mo-Si in the study. Accordingly, outdoor assessment shows that CIGS modules have demonstrated high performance in terms of yields and performance ratios in Thailand climate conditions.

Analysis of Mechanism for Photovoltaic Properties and Bypass Diode of Crystalline Silicon and CuInxGa(1-x)Se2 Module in Partial Shading Effect (결정질 실리콘 및 CuInxGa(1-x)Se2 모듈의 부분음영에 따른 태양전지 특성 변화 및 바이패스 다이오드의 작동 메커니즘 분석)

  • Lee, Ji Eun;Bae, Soohyun;Oh, Wonwook;Kang, Yoonmook;Kim, Donghwan;Lee, Hae-Seok
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.196-201
    • /
    • 2015
  • This paper presents the impact of partial shading on $CuIn_xGa_{(1-x)}Se_2(CIGS)$ photovoltaic(PV) modules with bypass diodes. When the CIGS PV modules were partially shaded, the modules were under conditions of partial reverse bias. We investigated the characterization of the bypass diode and solar cell properties of the CIGS PV modules when these was partially shaded, comparing the results with those for a crystalline silicon module. In crystalline silicon modules, the bypass diode was operated at a partial shade modules of 1.67 % shading. This protected the crystalline silicon module from hot spot damage. In CIGS thin film modules, on the other hand, the bypass diode was not operated before 20 % shading. This caused damage because of hotspots, which occurred as wormlike defects in the CIGS thin film module. Moreover, the bypass diode adapted to the CIGS thin film module was operated fully at 60% shading, while the CIGS thin film module was not operated under these conditions. It is known that the bypass diode adapted to the CIGS thin film module operated more slowly than that of the crystalline silicon module; this bypass diode also failed to protect the module from damage. This was because of the reverse saturation current of the CIGS thin film, $1.99{\times}10^{-5}A/cm^2$, which was higher than that of crystalline silicon, $8.11{\times}10^{-7}A/cm^2$.

고온 및 고온고습 가속시험에 의한 CIGS PV 모듈의 열화거동

  • Lee, Dong-Won;Nam, Song-Min;Kim, Yong-Nam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.421-421
    • /
    • 2012
  • Cu(In,Ga)$Se_2$ (CIGS) 화합물은 직접천이형 반도체로 열적으로 매우 안정하고 에너지밴드갭이 1.04 eV로 이상적인 값에 가깝고, 특히 높은 광흡수계수를 가지기 때문에 박막 태양전지로서 커다란 응용 잠재력을 갖고 있는 광흡수층 재료이다. CIGS 화합물 박막 태양전지의 효율은 연구실에서는 ~20%를 높은 효율을 보고하고 있으며, 모듈급에서도 ~13%의 효율을 보이고 있다. 그러나 CIGS 박막 태양전지를 대면적 또는 양산화에 적용하기 위해서는 20년 이상의 장기적인 수명을 보장할 수 있는 내구성을 갖추어야 한다. 본 연구에서는 CIGS 모듈의 장기적인 신뢰성을 평가하기 위해 CIGS PV 모듈을 대상으로 대표적인 고온 고습 조건인 IEC-61646 규격을 이용하여 $85^{\circ}C$/85% RH에서 1000시간 동안 가속시험이 수행되었고, 고온 환경하에서 모듈의 성능 저하에 미치는 영향을 고찰하기 위해 모듈을 $85^{\circ}C$에서 1000시간 노출시켰다. 두 종류의 가속 스트레스시험 후에 모듈들의 외형적인 노화현상 및 전기적 열화 성능을 분석하였다. 또한 모듈의 효율저하의 원인을 규명하기 위해 모듈 구성 재료 중 충진재료로 사용하는 EVA sheet와 투명전극 AZO를 대상으로 고장분석을 수행하였다. AZO의 미세구조 관찰, 결정상 분석, XPS 분석 및 전기적 분석과 EVA sheet의 FT-IR 분석과 TG-DSC 분석들을 종합하여 CIGS PV 모듈의 성능저하의 원인을 규명하였다.

  • PDF

The Characteristics on CIGS Thin Film PV Module for Curtain Wall Spandrel Applications (커튼월 스팬드럴 적용을 위한 CIGS 박막 모듈의 특성 분석 연구)

  • Kang, Jun-Gu;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2013
  • In this study, three different types of experimental models of BIPV curtain wall units with GIGS modules were built, and their thermal and electrical performances were analyzed. The experimental results showed that the temperature of the rear side of the GIGS module with the application of an insulation in the curtain wall spandrels was higher than a GIGS module standalone by $22^{\circ}C$, which results in a reduction in the power generation of the former by 8 %. On the other hand, when ventilation was applied to the model to improve the power generation performance, the module temperature was observed to be $142^{\circ}C$ lower compared to the enclosed type, and the power generation performance improved by 5 %. It confirmed that the temperature increase in the rear side of the GIGS module with insulation layer reduced the electrical performance of the module. Based on this, it is claimed that providing sufficient ventilation at the GIGS applied spandrels contribute to improve the power generation of the GIGS module.