• Title/Summary/Keyword: CFT columns

Search Result 175, Processing Time 0.026 seconds

An Evaluation of Blast Resistance of Partially Reinforced CFT Columns using Computational Analysis (전산해석을 이용한 부분 보강된 CFT 기둥의 폭발저항성능 평가)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2015
  • In this paper, the blast resisting performance of partially reinforced CFT columns was compared with the normal CFT columns to evaluate the effect of reinforcing with steel plates. Autodyn which is a specialized hydro-code for analysis of explosion and impact was used to simulate the structural behavior of the CFT columns under the blast loadings. The interaction between concrete and surrounding steel plates was modeled with friction and join option to represent the realistic damage of columns. According to the analysis, the partially reinforced CFT column showed enhanced blast resisting performance than the normal CFT columns. Also the improvement of blast resisting performance was depended on the height of reinforcing steel plates.

Axial Loading Behaviors and ACI 440 Code Applied Ultimate Axial Strength Formula of CFRP Strengthened Circular CFT Columns (탄소섬유쉬트로 보강된 원형CFT기둥의 압축거동과 ACI 440 code를 응용한 압축내력예측식 제안)

  • Park, Jai-Woo;Hong, Young-Kyun;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • This study investigates the axial behavior of CFRP strengthened circular CFT columns and proposes the design formula of CFRP strengthened circular CFT columns. 10 specimens were prepared and axial loading test were conducted to investigate the retrofitting effects of CFRP composites on CFT columns. The main parameters are the number of FRP sheets and D/t ratio. Test results showed that the CFRP retrofitting enhanced the load bearing capacity of the circular CFT columns. Finally, A ACI 440 code applied ultimate axial strength formula is proposed to predict the ultimate strength of CFRP strengthened circular CFT columns. The proposed formula are good agreement with the test results.

The Experiment and Design Formula of Rectangular CFT Columns Reinforced by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 각형 CFT기둥의 실험 및 설계식)

  • Park, Jai-Woo;Chung, Sung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4024-4030
    • /
    • 2010
  • Axial load tests and cyclic load tests for FRP reinforced rectangular CFT columns were carried out The main parameters were width-thickness ratio of a steel tubeand FRP layer numbers for the axial load tests and were concrete strength and FRP layer numbers for cyclic load tests. The maximum strength and ductility capacity were compared between the current CFT columns and the FRP reinforced CFT columns. Finally, the axial design formulas were presented for the FRP reinforced CFT columns.

Experimental Study of the Fire Behavior of CFT Columns in Relation to the Sectional Shape & Size (단면형상 및 크기에 따른 콘크리트 충전강관(CFT) 기둥의 화재거동에 관한 실험적 연구)

  • Cho, Bum-Yean;Kim, Heung-Youl;Kwon, Ki-Seok;Yang, Seung-Cho
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • In this study, fire resistance tests were conducted to evaluate the fire resistance performance of unprotected and non-welded CFT columns in relation to the shape and size of cross-sections. Unprotected slot-type CFT columns which were ${\square}300$ and ${\square}500$ in dimensions resisted fire for 125 minutes and more than 180 minutes, respectively. Strain analysis showed that slot-type CFT columns were more ductile than welded CFT columns. The temperatures of central parts measured when welded CFT columns and slot-type CFT columns had lost fire resistance performance were higher in the former than the latter. Therefore, slot connection does not a great influence on the temperatures inside the concrete.

Experimental Study on Concrete Steel Circular Tubes Confined by Carbon Fiber Sheet under Axial Compression Loads (탄소섬유쉬트로 구속된 콘크리트충전 원형강관기둥의 단조압축실험)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup;Choi, Sung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.61-71
    • /
    • 2009
  • This paper presents the results of an experiment comparing the current circular CFT columns and circular CFT columns that were additionally confined by carbon fiber sheets (CFS) under axial loading. The main experimental parameters are the numbers of CFS layers and the diameter-to-thickness ratio. 10 specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, load-axial deformation curve, maximum axial strength, and deformation capacity of the CFT columns and confined CFT columns were compared. The test results showed that the maximum axial strengths of CFT columns additionally confined by CFS are increased higher than those of the current CFT columns, and that local buckling can be delayed due to the confinement effect of CFS.

Experimental study on circular concrete filled steel tubes with and without shear connectors

  • Chithira, K.;Baskar, K.
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.97-114
    • /
    • 2014
  • This paper deals with a study on ultimate strength behaviour of eccentrically loaded CFT columns with and without shear connectors. Thirty specimens are subjected to experimental investigation under eccentric loading condition. P-M curves are generated for all the test specimens and critical eccentricities are evaluated. Three different D/t ratios such as 21, 25 and 29 and L/D ratios varying from 5 to 20 are considered as experimental parameters. Six specimens of bare steel tubes as reference specimens, twelve specimens of CFT columns without shear connectors and twelve specimens of CFT columns with shear connectors, in total thirty specimens are tested. The P-M values at the ultimate failure load of experimental study are found to be well agreed with the results of the proposed P-M interaction model. The load-deflection and load-strain behaviour of the experimental column specimens are presented. The behaviour of the CFT columns with and without shear connectors is compared. Experimental results indicate that the percentage increase in load carrying capacity of CFT columns with shear connectors compared to the ordinary CFT columns is found to be insignificant with a value ranging from 6% to 13%. However, the ductility factor of columns with shear connectors exhibit higher values than that of the CFT columns without shear connectors. This paper presents the proposed P-M interaction model and experimental results under varying parameters such as D/t and L/D ratios.

The Experimental Study on Axial Loaded Concrete Filled Steel Tube Confined by Carbon Fiber Sheet (탄소섬유쉬트로 구속된 콘크리트충전 각형강관기둥의 단조압축실험)

  • Park, Jai Woo;Hong, Young Kyun;Hong, Gi Soup;Lee, Seoung Hee;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.311-320
    • /
    • 2009
  • This paper presents the experimental results of an experiment on the current rectangular CFT columns and rectangular CFT columns additionally confined by carbon fiber sheets(CFS) under axial loading. The main experimental parameters were the layer numbers of the CFS and the depth-to-thickness ratio. Nine specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, the load-axial deformation curve, the maximum axial strength, and the deformation capacity of the CFT columns and the confined CFT columns were compared. Finally, it was seen that the maximum axial strengths of the CFT increased more significantly than that of the current CFT columns because of delayed local buckling.

Flexural Strength Design Equation of Concrete Filled Steel Tube(CFT) Column Reinforced by Carbon Fiber Sheet (탄소섬유쉬트로 보강한 콘크리트 충전강관(CFT) 기둥의 휨내력식)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.29-36
    • /
    • 2008
  • The TR-CFT(Transversely Reinforced Concrete Filled Steel Tube) column is proposed to control or at least delay the state of local buckling at the critical section by wrapping the CFT columns with a carbon fiber sheet. In this study, an equation to determine the flexural strength of TR-CFT is proposed. The ACI-318 code, in which the contribution of the confining effect in the concrete filled steel tube is not appropriately accounted for, may be conservative. Therefore, flexural strength design equations for CFT columns and TR-CFT columns are proposed based on the concrete strain-stress curve, which contributes to the confining effect. Finally, the predicted results for the CFT and TR-CFT columns are shown to be in good agreement with actual test results.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines

  • Shariati, Mahdi;Naghipour, Morteza;Yousofizinsaz, Ghazaleh;Toghroli, Ali;Tabarestani, Nima Pahlavannejad
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.377-391
    • /
    • 2020
  • A concrete filled steel tube (CFT) column with stiffeners has preferable behavior subjected to axial loading condition due to delay local buckling of the steel wall than traditional CFT columns without stiffeners. Welding lines in welded built-up steel box columns is expected to behave as longitudinal stiffeners. This study has presented a numerical investigation into the behavior of built-up concrete filled steel tube columns under axial pressure. At first stage, a finite element model (FE) has been built to simulate the behavior of built-up CFT columns. Comparing the results of FE and test has shown that numerical model passes the desired conditions and could accurately predict the axial performance of CFT column. Also, by the raise of steel tube thickness, the load bearing capacity of columns has been increased due to higher confinement effect. Also, the raise of concrete strength with greater cross section is led to a higher load bearing capacity compared to the steel tube thickness increment. In CFT columns with greater cross section, concrete strength has a higher influence on load bearing capacity which is noticeable in columns with more welding lines.