• Title/Summary/Keyword: C2W

Search Result 8,416, Processing Time 0.042 seconds

Stability of W/O Nanoemulsions with Low Viscosity Prepared by PIC Method (PIC 방법으로 제조된 저점도 W/O 나노에멀젼의 안정성)

  • Cho, Wan Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.127-133
    • /
    • 2016
  • In this study, water-in-oil (W/O) nanoemulsions of water/Span 80-Nikkol BL 25/oil system were prepared by the PIC method at elevated temperature. This method allows the formation of finely dispersed W/O nanoemulsions with low viscosity in this system. However, macroemulsions rather than nanoemulsions were prepared by PIC method at room temperature. As a result of the significant change of interfacial tension with temperature, the emulsion droplet size decreases from $2{\mu}m$ to 100 nm with the increase in temperature from $30^{\circ}C$ to $80^{\circ}C$. The droplet size of nanoemulsions prepared at $80^{\circ}C$ was in the range of 50 ~ 200 nm and the internal phase content could reach as high as 15 wt%. The most stable nanoemulsion was formed in the vicinity of 7.0 of optimum HLB of the emulsifier mixture. The obtained nanoemulsions were stable without obvious change in droplet size in one month. This study provides valuable information for optimizing the formation of W/O nanoemulsions with low viscosity. These results suggest that W/O nanoemulsions of low viscosity could be useful for cosmetics with soft feeling.

A Study On Properties and Thermal Decomposition of W-Co Salt Powders Synthesized by Spray Drying (분무 건조된 W-Co 복합염의 열분해 및 분말 특성에 관한 연구)

  • Gwon, Dae-Hwan;An, In-Seop;Ha, Guk-Hyeon;Kim, Byeong-Gi;Kim, Yu-Yeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.953-959
    • /
    • 2001
  • Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution of ammonium $metatungstate(NH_4)_6(H_2W_{12}O_{40}){\cdot}4H_2O,\; AMT)$ and cobalt nitrate $hexahydrate(Co(NO_3)_2{\cdot}6H_2O)$. The thermal decomposition process of spray dried W-Co salt powders was studied by TG, XRD, SEM, TEM and FT-IR. Spray dried W-Co salt powders were calcined for 1 hour in the temperature from$ 350^{\circ}C$ to $800^{\circ}C$ in atmosphere of air. At the temperatures over $600^{\circ}C$, spherical $CoWO_4/WO_3$ composite oxide powders were obtained. The primary particle size of W/Co composite oxide powders increased with increasing thermal decomposition temperature due to the particle growth. The observed crystallite size by TEM was in the range of 60nm and that of $CoWO_4$ calculated by Scherrer's formula at $800^{\circ}C$ was smaller than 55nm. The crystallite site was identified by XRD and TEM.

  • PDF

미생물을 이용한 원유 및 원유제품의 분해 특성

  • O, Gyeong-Taek;Park, Gwi-Hwan;Lee, Jeong-Il;Lee, Jung-Gi;Kim, Seong-Jun;Motoki, Kubo;Jeong, Seon-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.435-438
    • /
    • 2000
  • Crude oil-degrading microorganisms, Acinetobacter sp. A132, Pseudomonas aeruginosa F722, and Acinetobacter calcoaceticus OM1 were isolated from soil and sea. The optimal temperature of strain A132 and strain F722 on growth isolated from soil was $35^{\circ}C$ both, and also their growth were optimized at pH 8 and 9, respectively. The growth of the strains, A132 and F722, showed that crude oil of 2% (w/v) in culture broth in which crude oil was used as carbon and energy sources appeared to be an optimum. Optimal culture conditions of strain OM1 were different from those of the soil microorganisms except for temperature. The growth of strain OM1 was optimized at pH 7 and crude oil of 3.0% (w/v). The degradability to crude oil by strain A132 showed maximum $5.49g/\;l\;{\cdot}\;day$ under the conditions of $25^{\circ}C$, NaCl of 1.0% (w/v), and crude oil of 2.0% (w/v). The highest degradability of strain F722 to crude oil was $1.19g/\;l\;{\cdot}\;day$ under the culture conditions at $35^{\circ}C$, NaCl 1.0% (w/v), and crude oil of 2.0% (w/v). The degradation characteristics of kerosene $(nC_9-nC_{20})$ and diesel $(nC_9-nC_{28})$ by strain OM1, and F722 were analyzed by gas chromatography. Strain OM1 degraded more than 95% of kerosene and 75% of diesel for 7 days cultivation. Strain F722 showed degradation of more than 80% to kerosene in 10 days.

  • PDF

Effect of Surface Treatments of Polycrystalline 3C-SiC Thin Films on Ohmic Contact for Extreme Environment MEMS Applications (극한 환경 MEMS용 옴익 접촉을 위한 다결정 3C-SiC 박막의 표면 처리 효과)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • This paper describes the TiW ohmic contact characteristics under the surface treatment of the polycrystalline 3C-SiC thin film grown on $SiO_2/Si(100)$ wafers by APCVD. The poly 3C-SiC surface was polished by using CMP(chemical mechanical polishing) process and then oxidized by wet-oxidation process, and finally removed SiC oxide layers. A TiW thin film as a metalization process was deposited on the surface treated poly 3C-SiC layer and was annealed through a RTA(rapid thermal annealing) process. TiW/poly 3C-SiC was investigated to get mechanical, physical, and electrical characteristics using SEM, XRD, XPS, AFM, optical microscope, I-V characteristic, and four-point probe, respectively. Contact resistivity of the surface treated 3C-SiC was measured as the lowest $1.2{\times}10^{-5}{\Omega}cm^2$ at $900^{\circ}C$ for 45 sec. Therefore, the surface treatments of poly 3C-SiC are necessary to get better contact resistance for extreme environment MEMS applications.

The interfacial properties of th eanneled SiO$_{2}$/TiW structure (열처리된 SiO$_{2}$/TiW 구조의 계면 특성)

  • 이재성;박형호;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.117-125
    • /
    • 1996
  • The variation of the interfacial and the electrical properties of SiO$_{2}$TiW layers as a function of anneal temperature was extensively investigated. During the deposition of SiO$_{2}$ on TiW chemical bonds such as SiO$_{2}$, TiW, WO$_{3}$, WO$_{2}$ TiO$_{2}$ Ti$_{2}$O$_{5}$ has been created at the SiO$_{2}$/TiW interface. At the anneal temperature of 300$^{\circ}C$, WO$_{3}$ and TiO$_{2}$ bonds started to break due to the reduction phenomena of W and Ti and simultaneously the metallic W and Ti bonds started to create. Above 500$^{\circ}C$, a part of Si-O bonds was broken and consequently Ti/W silicide was formed. Form the current-voltage characteristics of Al/Sico$_{2}$(220$\AA$)/TiW antifuse structure, it was found that the breakdown voltage of antifuse device wzas decreased with increasing annealing temperature for SiO$_{2}$(220$\AA$)/TiW layer. When r, the insulating property of antifuse device of the deterioration of intermetallic SiO$_{2}$ film, caused by the influw of Ti and W.W.

  • PDF

Study on Oxidation Behavior of (W,Mo)$Si_2$ Powders in Air at 400, 500 and $600^{\circ}C$

  • Peizhong, Feng;Xuanhui, Qu;Xiaohong, Wang;Farid, Akhtar
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1149-1150
    • /
    • 2006
  • The oxidation of (W,Mo)$Si_2$ powders has been investigated at 400, 500 and $600^{\circ}C$ for 12.0 hours in air. It was shown that the low temperature oxidation resistance of (W,Mo)$Si_2$ was worse than that of $MoSi_2$, and they showed great changes in mass, volume and colour. Especialy at $500^{\circ}C$, the amount of volume expansion of (W,Mo)$Si_2$ was as high as about $7\sim8$ times and color changed from black to yellow after 4.0h with $MoO_3$, $WO_3$, (W,Mo)$O_3$ and amorphous $SiO_2$ as main reaction products. The mass gain and oxidation rate were relatively slower at $400^{\circ}C$ and $600^{\circ}C$ than that at $500^{\circ}C$.

  • PDF

The Phase Transition and Thermochromic Characteristics of W/Mg-codoped Monoclinic VO2 Nanoparticle and Its Composite Film

  • Park, Heesun;Kim, Jongmin;Jung, Young Hee;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • Monoclinic $VO_2(M)$ nanoparticles codoped with 1.5 at. % W and 2.9 at. % Mg were synthesized by the hydrothermal treatment and post-thermal transformation method of $V_2O_5-H_2C_2O_4-H_2O$ with $Na_2WO_4$ and $Mg(NO_3)_2$. The composite thin film of the W/Mg-codoped $VO_2(M)$ with a commercial acrylic block copolymer was also prepared on PET substrate by wet-coating method. The reversible phase transition characteristics of the codoped $VO_2(M)$ nanoparticles and the composite film were investigated from DSC, resistivity and Vis-NIR transmittance measurements compared with the undoped and Wdoped $VO_2(M)$ samples. Mg-codoping into W-doped $VO_2(M)$ nanoparticles synergistically enhanced the transition characteristics by increasing the sharpness of transition while the transition temperature ($T_c$) lowered by W-doping was maintained. The codoped composite film showed the prominently enhanced NIR switching efficiency compared to only W-doped $VO_2(M)$ film with a lowered $T_c$.

Fabrication of W-10wt.%Cu Powder for the Application of Metal Injection Molding (금속사출성형을 위한 W-10wt.%Cu 분말의 제조에 관한 연구)

  • 김순욱;손찬현;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.245-252
    • /
    • 2001
  • Recent remarkable progress in the semiconductor industry has promoted smaller size of semiconductor chips and increased amounts of heat generation. So, the demand for a substrate material to meet both the characteristics of thermal expansion coefficient and heat radiation has been on the increase. Under such conditions, tungsten(W)-copper(Cu) has been proposed as materials to meet both of the above characteristics. In the present study, the W-10wt.%Cu powders were synthesised by the mixing and hydrogen reduction of the starting mixture materials such as W-Cu, $W-CuCl_2$and $WO_3-CuCl_2$ in order to obtain the full densification. The W-10wt.%Cu produced by hydrogen reduction showed the higher interparticle friction than the simple mixed W-10wt%Cu because of the W agglomerates. In the dilatometric analysis the W-10wt.%Cu prepared from the $W-CuCl_2$was largely shrank by heating up $1400^{\circ}C$ at the constant heating rate of $5^{\circ}C$/min. The possibility of application of metal injection molding (MIM) was also investigated for mass production of the complex shaped W-Cu parts in semiconductor devices. The relationship between the temperature of molding die and the pressure of injection molding was analyzed and the heating up stage of 120-$290^{\circ}C$ in the debinding process was controlled for the most suitable MIM condition.

  • PDF

Formation of Mo(NAr)(PMe₃)₂Cl₃and Mo₂(PMe₃)₄Cl₄from Reduction of Mo(NAr)₂Cl₂(DME) with Mg in the Presence of PMe₃[Ar=2,6-diisopropylphenyl]

  • 정건수;박병규;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.213-217
    • /
    • 1997
  • Magnesium reduction of Mo(N-C6H3-2,6-i-Pr2)2Cl2(DME) in the presence of trimethylphosphine led to a mixture of Mo(N-C6H3-2,6-i-Pr2)(PMe3)2Cl3, 1, and Mo2(PMe3)4Cl4, 2. In solution 1 is slowly air-oxidized to Mo(N-2,6-i-Pr2-C6H3)(OPMe3)(PMe3)Cl3, 3. 1 is chemically inert to carbon nucleophiles (ZnMe2, ZnEt2, AlMe3, AlEt3, LiCp, NaCp, TlCp, NaCp*, MeMgBr, EtMgBr), oxygen nucleophiles (LiOEt, LiO-i-Pr, LiOPh, LiOSPh), and hydrides (LiBEt3H, LiBEt3D). Crystal data for 1: orthorhombic space group P212121, a=11.312(3) Å, b=11.908(3) Å, c=19.381(6) Å, Z=4, R(wR2)=0.0463 (0.1067). Crystal data for 2: monoclinic space group Cc, a=18.384(3) Å, b=9.181(2) Å, c=19.118(3) Å, b=124.98(1)°, Z=4, R(wR2)=0.0228 (0.0568). Crystal data for 3: orthorhombic space group P212121, a=11.464(1) Å, b=14.081(2) Å, c=16.614(3) Å, Z=4, R(wR2)=0.0394 (0.0923).

Analysis of Lattice constants change for study of W-C-N Diffusion (W-C-N 확산방지막의 격자상수 변화 분석을 통한 특성 연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.109-112
    • /
    • 2008
  • The miniaturization of device size and submicron process causes serious problems in conventional metallization due to the solubility of silicon and metal at the interface, such as an increasing contact resistance in the contact hole and interdiffusion between metal and silicon. Moreover, the interaction between Cu and Si is so strong and detrimental to the electrical performance of Si even at temperatures below $200^{\circ}C$. Therefore it is necessary to implement a barrier layer between Cu and Si. So we study W-C-N diffusion barrier for prevent Cu diffusion as a function of $N_2$ gas flow and thermal stability. Especially, we also study the W-C-N diffusion barrier for analyzing the change of lattice constants.