• Title/Summary/Keyword: C-type lectin

Search Result 36, Processing Time 0.019 seconds

Immunomodulating Activity of Fungal $\beta$-Glucan through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.11a
    • /
    • pp.103-115
    • /
    • 2006
  • $\beta$-Glucan is a glucose polymer that has linkage of $\beta$-(1,3), -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, $\beta$-glucans are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding $\beta$-glucan as pathogen-associated molecular pattern (PAMP). Recently $\beta$-glucan receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-1 is consisted of 7 exons and 6 introns. The polypeptide of dectin-1 has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-1 could recognize variety of beta-1,3 and/or beta-1,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-1 mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-1 was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with $\beta$-glucans of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and TNF-$\alpha$ in the presence of LPS. However, GLG alone did not increase IL-6 nor TNF-$\alpha$. These results suggest that receptor dectin-1 cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

Immunomodulating Activity of Fungal ${\beta}-Glucan$ through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • 한국약용작물학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.103-115
    • /
    • 2006
  • [ ${\beta}-Glucan$ ] is a glucose polymer that has linkage of ${\beta}-(1,3)$, -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, ${\beta}-glucans$ are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding ${\beta}-glucans$ as pathogen-associated molecular pattern (PAMP). Recently ${\beta}-glucans$ receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-l is consisted of 7 exons and 6 introns. The polypeptide of dectin-l has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-l could recognize variety of beta-l,3 and/or beta-l,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-l mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-l was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with ${\beta}-glucans$ of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and $TNF-{\alpha}$ in the presence of LPS. However, GLG alone did not increase IL-6 nor $TNF-{\alpha}$ These results suggest that receptor dectin-l cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

Recent Advances in Structural Studies of Antifreeze Proteins (구조 생물학을 이용한 Antifreeze protein의 최근 연구동향)

  • Lee, Jun-Hyuck;Lee, Sung-Gu;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Immune-triggering effect of the foodborne parasite Kudoa septempunctata through the C-type lectin Mincle in HT29 cells

  • Shin, Ji-Hun;Yang, Jung-Pyo;Seo, Seung-Hwan;Kim, Sang-Gyun;Kim, Eun-Min;Ham, Do-Won;Shin, Eun-Hee
    • BMB Reports
    • /
    • v.53 no.9
    • /
    • pp.478-483
    • /
    • 2020
  • Kudoa septempunctata is a myxozoan parasite that causes food poisoning in individuals consuming olive flounder. The present study aimed to investigate the currently insufficiently elucidated early molecular mechanisms of inflammatory responses in the intestine owing to parasite ingestion. After Kudoa spores were isolated from olive flounder, HT29 cells were exposed to spores identified to be alive using SYTO-9 and propidium iodide staining or to antigens of Kudoa spores (KsAg). IL-1β, IL-8, TNF-α and NFKB1 expression and NF-κB activation were assessed using real-time PCR, cytokine array and western blotting. The immunofluorescence of FITC-conjugated lectins, results of ligand binding assays using Mincle-Fc and IgG-Fc, CLEC4E expressions in response to KsAg stimulation, and Mincle-dependent NF-κB activation were assessed to clarify the early immune-triggering mechanism. Inflammatory cytokines (IL-1β, GM-CSF and TNF-α), chemokines (IL-8, CCL2, CCL5 and CXCL1) and NF-κB activation (pNF-κB/NF-κB) in HT29 cells increased following stimulation by KsAg. The immunofluorescence results of spores and lectins (concanavalin A and wheat germ agglutinin) suggested the importance of Mincle in molecular recognition between Kudoa spores and intestinal cells. Practically, data for Mincle-Fc and KsAg binding affinity, CLEC4E mRNA expression, Mincle immunofluorescence staining and hMincle-dependent NF-κB activation demonstrated the involvement of Mincle in the early immune-triggering mechanism. The present study newly elucidated that the molecular recognition and immune-triggering mechanism of K. septempunctata are associated with Mincle on human intestinal epithelial cells.

Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation

  • Young-Jin Youn;Yu-Bin Lee;Sun-Hwa Kim;Hee Kyung Jin;Jae-sung Bae;Chang-Won Hong
    • IMMUNE NETWORK
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.8
    • /
    • 2021
  • Patients with severe coronavirus disease 2019 (COVID-19) demonstrate dysregulated immune responses including exacerbated neutrophil functions. Massive neutrophil infiltrations accompanying neutrophil extracellular trap (NET) formations are also observed in patients with severe COVID-19. However, the mechanism underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation has not yet been elucidated. Here we show that 2 viral proteins encoded by SARS-CoV-2, the nucleocapsid protein and the whole spike protein, induce NET formation from neutrophils. NET formation was ROSindependent and was completely inhibited by the spleen tyrosine kinase inhibition. The inhibition of p38 MAPK, protein kinase C, and JNK signaling pathways also inhibited viral protein-induced NET formation. Our findings demonstrate one method by which SARSCoV-2 evades innate immunity and provide a potential target for therapeutics to treat patients with severe COVID-19.

Expression of Inflammatory Cytokines by Beta-glucan in Macrophage Cell Line (대식세포주에서 베타-글루칸에 의한 염증성 사이토카인의 발현)

  • Kim, Mi-Jeong;Ryu, Han-Wook;Cho, Gye-Hyung;Kim, Ha-Won
    • YAKHAK HOEJI
    • /
    • v.52 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • Immune system can protect host attacking from a variety of microorganism and virus through innate and adaptive immunities. The innate immune system can be activated by recognition of conserved carbohydrates on the cell surface of pathogen resulting in protection, immunity regulation and inflammation. Immunostimulating and anti-tumor ${\beta}$-glucan, major cell wall component of many fungi, could be recognized as pathogen associated molecular pattern (PAMP) by C-type lectin such as pathogen recognition receptor (PRR) of host innate immunity cells. In spite of many studies of basidiomycetes ${\beta}$-glucan on immunostimulation, little is known about the precise mechanism as molecular-level. Among C-type lectins, dectin-1 was cloned and reported as a ${\beta}$-glucan receptor. In this report, we demonstrated induction of cytokine gene transcription by Ganoderma lucidum ${\beta}$-glucan in the absence or presence of lipopolysaccharide (LPS) by RT-PCR analysis. The expression of murine dectin-1 (MD-1) on RAW264.7 macrophage by RT-PCR showing both the full length, 757 bp $(MD-1{\alpha})$ and alternative spliced form, 620 bp $(MD-1{\beta})$. Both $MD-1{\alpha}$ and $MD-1{\beta}$ mRNAs were induced by ${\beta $-glucan both in the absence and presence of LPS. To explore expression of inflammatory cytokines by ${\beta}$-glucan, RAW264.7 cells were treated with ${\beta}$-glucan for 12 hours. As a result, the expressions of IL-1 IL-6, IL-l0 and $TNF-{\alpha}$ were increased by ${\beta}$-glucan treatment in a dose-dependent fashion. From these results, ${\beta}$-glucan induced transcriptions of dectin-1 and immune activating cytokine genes, indicating induction of immune allertness by expressing dectin-1 and secreting inflammatory cytokines.

Qualitative Analysis of Proteins in Two Snake Venoms, Gloydius Blomhoffii and Agkistrodon Acutus

  • Ha, Su-Jeong;Choi, Yeo-Ok;Kwag, Eun-Bin;Kim, Soo-Dam;Yoo, Hwa-seung;Kang, In-Cheol;Park, So-Jung
    • Journal of Pharmacopuncture
    • /
    • v.25 no.1
    • /
    • pp.52-62
    • /
    • 2022
  • Objectives: Snake venom is a complex mixture of various pharmacologically active substances, such as small proteins, peptides, and organic and mineral components. This paper aims to identify and analyse the proteins in common venomous snakes, such as Gloydius blomhoffii (G. blomhoffii) and Agkistrodon acutus (A. acutus), in Korea. Methods: We used mass spectrometry, electrophoresis, N-terminal sequencing and in-gel digestion to analyse the proteins in these two snake venoms. Results: We identified eight proteins in G. blomhoffii venom and four proteins in A. acutus venom. The proteins detected in G. blomhoffii and A. acutus venoms were phospholipase A2, snake venom metalloproteinase and cysteine-rich secretory protein. Snake C-type lectin (snaclec) was unique to A. acutus venom. Conclusion: These data will contribute to the current knowledge of proteins present in the venoms of viper snakes and provide useful information for investigating their therapeutic potential.

CD72 is a Negative Regulator of B Cell Responses to Nuclear Lupus Self-antigens and Development of Systemic Lupus Erythematosus

  • Takeshi Tsubata
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2019
  • Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by production of autoantibodies to various nuclear antigens and overexpression of genes regulated by IFN-I called IFN signature. Genetic studies on SLE patients and mutational analyses of mouse models demonstrate crucial roles of nucleic acid (NA) sensors in development of SLE. Although NA sensors are involved in induction of antimicrobial immune responses by recognizing microbial NAs, recognition of self NAs by NA sensors induces production of autoantibodies to NAs in B cells and production of IFN-I in plasmacytoid dendritic cells. Among various NA sensors, the endosomal RNA sensor TLR7 plays an essential role in development of SLE at least in mouse models. CD72 is an inhibitory B cell co-receptor containing an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic region and a C-type lectin like-domain (CTLD) in the extracellular region. CD72 is known to regulate development of SLE because CD72 polymorphisms associate with SLE in both human and mice and CD72-/- mice develop relatively severe lupus-like disease. CD72 specifically recognizes the RNA-containing endogenous TLR7 ligand Sm/RNP by its extracellular CTLD, and inhibits B cell responses to Sm/RNP by ITIM-mediated signal inhibition. These findings indicate that CD72 inhibits development of SLE by suppressing TLR7-dependent B cell response to self NAs. CD72 is thus involved in discrimination of self-NAs from microbial NAs by specifically suppressing autoimmune responses to self-NAs.

Improved immune responses and safety of foot-and-mouth disease vaccine containing immunostimulating components in pigs

  • Choi, Joo-Hyung;You, Su-Hwa;Ko, Mi-Kyeong;Jo, Hye Eun;Shin, Sung Ho;Jo, Hyundong;Lee, Min Ja;Kim, Su-Mi;Kim, Byounghan;Lee, Jong-Soo;Park, Jong-Hyeon
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.74.1-74.13
    • /
    • 2020
  • Background: The quality of a vaccine depends strongly on the effects of the adjuvants applied simultaneously with the antigen in the vaccine. The adjuvants enhance the protective effect of the vaccine against a viral challenge. Conversely, oil-type adjuvants leave oil residue inside the bodies of the injected animals that can produce a local reaction in the muscle. The long-term immunogenicity of mice after vaccination was examined. ISA206 or ISA15 oil adjuvants maintained the best immunity, protective capability, and safety among the oil adjuvants in the experimental group. Objectives: This study screened the adjuvant composites aimed at enhancing foot-and-mouth disease (FMD) immunity. The C-type lectin or toll-like receptor (TLR) agonist showed the most improved protection rate. Methods: Experimental vaccines were fabricated by mixing various known oil adjuvants and composites that can act as immunogenic adjuvants (gel, saponin, and other components) and examined the enhancement effect on the vaccine. Results: The water in oil (W/O) and water in oil in water (W/O/W) adjuvants showed better immune effects than the oil in water (O/W) adjuvants, which have a small volume of oil component. The W/O type left the largest amount of oil residue, followed by W/O/W and O/W types. In the mouse model, intramuscular inoculation showed a better protection rate than subcutaneous inoculation. Moreover, the protective effect was particularly weak in the case of inoculation in fatty tissue. The initial immune reaction and persistence of long-term immunity were also confirmed in an immune reaction on pigs. Conclusions: The new experimental vaccine with immunostimulants produces improved immune responses and safety in pigs than general oil-adjuvanted vaccines.

Expression and Characterization of Human N-Acetylglucosaminyltransferases and ${\alpha}$2,3-Sialyltransferase in Insect Cells for In Vitro Glycosylation of Recombinant Erythropoietin

  • Kim, Na-Young;Kim, Hyung-Gu;Kim, Yang-Hyun;Chung, In-Sik;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.383-391
    • /
    • 2008
  • The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed in mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennarytype complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using a pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of Nacetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using $UDP-^{14}C-Gal\;and\;CMP-^{14}C-Sia$ as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the ed blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.