We investigate when the product of two smooth manifolds admits a weakly Lagrangian embedding. Prove that, if $M^m$ and $N^n$ are smooth manifolds such that M admits a weakly Lagrangian embedding into ${\mathbb}C^m$ whose normal bundle has a nowhere vanishing section and N admits a weakly Lagrangian immersion into ${\mathbb}C^n$, then $M \times N$ admits a weakly Lagrangian embedding into ${\mathbb}C^{m+n}$. As a corollary, we obtain that $S^m {\times} S^n$ admits a weakly Lagrangian embedding into ${\mathbb}C^{m+n}$ if n=1,3. We investigate the problem of whether $S^m{\times}S^n$ in general admits a weakly Lagrangian embedding into ${\mathbb} C^{m+n}$.
We investigate when the .product of two smooth manifolds admits a weakly Lagrangian embedding. Assume M, N are oriented smooth manifolds of dimension m and n,. respectively, which admit weakly Lagrangian immersions into $C^m$ and $C^n$. If m and n are odd, then $M\;{\times}\;N$ admits a weakly Lagrangian embedding into $C^{m+n}$ In the case when m is odd and n is even, we assume further that $\chi$(N) is an even integer. Then $M\;{\times}\;N$ admits a weakly Lagrangian embedding into $C^{m+n}$. As a corollary, we obtain the result that $S^n_1\;{\times}\;S^n_2\;{\times}\;...{\times}\;S^n_k$, $\kappa$>1, admits a weakly Lagrang.ian embedding into $C^n_1+^n_2+...+^n_k$ if and only if some ni is odd.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.60-63
/
2017
자연어처리에 딥 러닝을 적용하기 위해 사용되는 Word embedding은 단어를 벡터 공간상에 표현하는 것으로 차원축소 효과와 더불어 유사한 의미의 단어는 유사한 벡터 값을 갖는다는 장점이 있다. 이러한 word embedding은 대용량 코퍼스를 학습해야 좋은 성능을 얻을 수 있기 때문에 기존에 많이 사용되던 word2vec 모델은 대용량 코퍼스 학습을 위해 모델을 단순화 하여 주로 단어의 등장 비율에 중점적으로 맞추어 학습하게 되어 단어의 위치 정보를 이용하지 않는다는 단점이 있다. 본 논문에서는 기존의 word embedding 학습 모델을 단어의 위치정보를 이용하여 학습 할 수 있도록 수정하였다. 실험 결과 단어의 위치정보를 이용하여 word embedding을 학습 하였을 경우 word-analogy의 syntactic 성능이 크게 향상되며 어순이 바뀔 수 있는 한국어에서 특히 큰 효과를 보였다.
자연어처리에 딥 러닝을 적용하기 위해 사용되는 Word embedding은 단어를 벡터 공간상에 표현하는 것으로 차원축소 효과와 더불어 유사한 의미의 단어는 유사한 벡터 값을 갖는다는 장점이 있다. 이러한 word embedding은 대용량 코퍼스를 학습해야 좋은 성능을 얻을 수 있기 때문에 기존에 많이 사용되던 word2vec 모델은 대용량 코퍼스 학습을 위해 모델을 단순화 하여 주로 단어의 등장 비율에 중점적으로 맞추어 학습하게 되어 단어의 위치 정보를 이용하지 않는다는 단점이 있다. 본 논문에서는 기존의 word embedding 학습 모델을 단어의 위치정보를 이용하여 학습 할 수 있도록 수정하였다. 실험 결과 단어의 위치정보를 이용하여 word embedding을 학습 하였을 경우 word-analogy의 syntactic 성능이 크게 향상되며 어순이 바뀔 수 있는 한국어에서 특히 큰 효과를 보였다.
KIPS Transactions on Computer and Communication Systems
/
v.2
no.4
/
pp.151-154
/
2013
In this paper, we will analyze embedding between Folded Hypercube and HFH. We will show Folded Hypercube $FQ_{2n}$ can be embedded into HFH($C_n,C_n$) with dilation 4, expansion $\frac{(C_n)^2}{2^{2n}}$ and HFH($C_d,C_d$) can be embedded into $FQ_{4d-2}$ with dilation O(d).
The Journal of Korean Association of Computer Education
/
v.17
no.2
/
pp.115-124
/
2014
Hypercube and star graph are widely known as interconnection network. The embedding of an interconnection network is a mapping of a network G into other network H. The possibility of embedding interconnection network G into H with a low cost, has an advantage of efficient algorithms usage in network H, which was developed in network G. In this paper, we provide an embedding algorithm between HCN and HON. HCN(n,n) can be embedded into HON($C_{n+1},C_{n+1}$) with dilation 3 and HON($C_d,C_d$) can be embedded into HCN(2d-1,2d-1) with dilation O(d). Also, star graph can be embedded to half pancake's value of dilation 11, expansion 1, and average dilation 8. Thus, the result means that various algorithms designed for HCN and Star graph can be efficiently executed on HON and half pancake, respectively.
The Journal of the Korea institute of electronic communication sciences
/
v.12
no.6
/
pp.1027-1034
/
2017
In this paper, we propose a new function embedding method that can measure mathematical projections of probability amplitude, probability, average expectation and matrix elements of stationary-state unit matrix at all control operation points of quantum gates. The function embedding method in this paper is to embed orthogonal normalization condition of probability amplitude for each control operating point into a binary scalar operator by using Dirac symbol and Kronecker delta symbol. Such a function embedding method is a very effective means of controlling the arithmetic power function of a unitary gate in a unitary transformation which expresses a quantum gate function as a tensor product of a single quantum. We present the results of evolutionary operation and projective measurement when we apply the proposed function embedding method to the ternary 2-qutrit cNOT gate and compare it with the existing methods.
Hierarchical Folded HyperStar Network has lower network cost than HCN(n,n) and HFN(n,n) which are hierarchical networks with the same number of nodes. In this paper, we analyze embedding between Hierarchical Folded HyperStar HFH($C_n,C_n$) and Hypercube, HCN(n,n), HFN(n,n). The results of embedding are that HCN(n,n), HFN(n,n) and Hypercube $Q_{2n}$ can be embedded into HFH($C_n,C_n$) with expansion $\frac{C^n}{2^{2n}}$ and dilation 2, 3, and 4, respectively. Also, HFH($C_n,C_n$) can be embedded into HFN(2n,2n) with dilation 1. These results mean so many developed algorithms in Hypercube, HCN(n,n), HFN(n,n) can be used efficiently in HFH($C_n,C_n$).
In this paper, we propose a reversible watermarking method to recover an original image after the watermark has been extracted. Most watermarking algorithms cause degradation of image quality in original digital content in the process of embedding watermark. In the proposed algorithm, the original image can be obtained when the degradation is removed from the watermarked image after extracting watermark information. In the proposed method, we utilize histogram shifting concept and Location Map structure. We could solve the Filp-Flop problem by using Location Map structure and enlarge the information embedding capacity by embedding recursively. Experimental results demonstrate that the embedding information as large as 120k bits can be realized while the invisibility as high as 41dB can be maintained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.