# WEAKLY LAGRANGIAN EMBEDDING AND PRODUCT MANIFOLDS

## YANGHYUN BYUN AND SEUNGHUN YI

ABSTRACT. We investigate when the product of two smooth manifolds admits a weakly Lagrangian embedding. We prove that, if  $M^m$  and  $N^n$  are smooth manifolds such that M admits a weakly Lagrangian embedding into  $\mathbb{C}^m$  whose normal bundle has a nowhere vanishing section and N admits a weakly Lagrangian immersion into  $\mathbb{C}^n$ , then  $M\times N$  admits a weakly Lagrangian embedding into  $\mathbb{C}^{m+n}$ . As a corollary, we obtain that  $S^m\times S^n$  admits a weakly Lagrangian embedding into  $\mathbb{C}^{m+n}$  if n=1,3. We investigate the problem of whether  $S^m\times S^n$  in general admits a weakly Lagrangian embedding into  $\mathbb{C}^{m+n}$ .

## 1. Introduction

The notion of weakly Lagrangian embedding was introduced by T. Kawashima ([5]) as a weaker version of Lagrangian embedding. He showed that  $S^n$  admits a weakly Lagrangian embedding into  $\mathbb{C}^n$  if and only if n=1,3, from which it follows that  $S^n$  does not admit any Lagrangian embedding into  $\mathbb{C}^n$  if  $n \neq 1,3$ . In fact, later it has been shown that, for any manifold  $M^n$  which admits a Lagrangian embedding into  $\mathbb{C}^n$ , we have  $\pi_1(M) \neq 1$  ([2]). Therefore it follows that  $S^n$  admits a Lagrangian embedding into  $\mathbb{C}^n$  only when n=1.

This note investigates when the product of two smooth manifolds admits a weakly Lagrangian embedding. In particular, we have

THEOREM 1. Let M, N be smooth manifolds of dimension m, n, respectively. Assume that M admits a weakly Lagrangian embedding into  $\mathbb{C}^m$  whose normal bundle has a nowhere vanishing section and N

Received May 18, 1998.

<sup>1991</sup> Mathematics Subject Classification: 53C40.

Key words and phrases: weakly Lagrangian embedding, product manifold, regular homotopy.

admits a weakly Lagrangian immersion into  $\mathbb{C}^n$ . Then  $M \times N$  admits a weakly Lagrangian embedding into  $\mathbb{C}^{m+n}$ .

In fact, the assumption on the existence of a nowhere vanishing section on the normal bundle is redundant if M is an oriented closed manifold: Let  $f: M \to \mathbb{C}^m$  be a weakly Lagrangian embedding. We have that  $\nu_f \cong (-1)^{n(n-1)/2}TM$  (Proposition 2.1) and  $\chi(M) = 0$  (Lemma 4.1). Thus the Euler characteristic of  $\nu_f$  vanishes, which means  $\nu_f$  admits a nowhere vanishing section.

As a corollary of Theorem 1, we conclude:

THEOREM 2.  $S^m \times S^n$  admits a weakly Lagrangian embedding into  $\mathbb{C}^{m+n}$  if n is 1 or 3.

In particular, the above provides more examples, in addition to  $S^3$ , of manifolds which admits a weakly Lagrangian embedding but not any Lagrangian embedding (see Corollary 3.2 below).

Also we have that  $S^m \times S^n$  does not admit any weakly Lagrangian embedding into  $\mathbb{C}^{m+n}$  if both m and n are even (see the below of Lemma 4.1). However we don't know what happens when one of m, n is odd while none of the two is 1 or 3, which is a subject of our ongoing investigation. We will provide a reason why this problem is more difficult in this case in the last section.

### 2. Basic notions and facts

Two subbundles  $\eta_0$  and  $\eta_1$  of a vector bundle  $\xi$  over a smooth manifold M is said to be *homotopic* if there exists a subbundle  $\tilde{\eta}$  of  $\xi \times I$  such that  $\tilde{\eta}|_{M \times \{0\}} = \eta_0$  and  $\tilde{\eta}|_{M \times \{1\}} = \eta_1$ .

A symplectic form on a vector bundle is a nondegenerate two form on it. A vector bundle of finite rank is referred to as a Lagrangian vector bundle if it is considered with a fixed symplectic two form. Note that a Lagrangian vector bundle should be of even rank. A subbundle  $\eta$  of a Lagrangian vector bundle  $\xi$  is a Lagrangian subbundle if 2 (rank  $\eta$ ) = rank  $\xi$  and the restriction of the symplectic form to  $\eta$  is the zero form. A subbundle  $\eta$  of a symplectic vector bundle  $\xi$  is called a weakly Lagrangian subbundle if  $\eta$  is homotopic to a Lagrangian subbundle of  $\xi$ .

Now let  $f: L \to M$  be an embedding (resp. immersion) of a smooth manifold L into a symplectic manifold M with a symplectic structure  $\omega$ . We call f a Lagrangian embedding (resp. immersion) if the tangent bundle TL of L is a Lagrangian subbundle of the symplectic vector bundle  $f^*TM$  (with the symplectic form  $f^*\omega$ ). Similarly, f is a weakly Lagrangian embedding (resp. immersion) if TL is a weakly Lagrangian subbundle of  $f^*TM$ .

We will consider  $\mathbb{C}^n$  with the usual symplectic structure. A Lagrangian embedding or a weakly Lagrangian embedding will be understood as 'into  $\mathbb{C}^n$ ' unless otherwise specified.

Note that the notion of weakly Lagrangian embedding (resp. immersion) is invariant under regular homotopy. That is, if  $f_0$  and  $f_1$  are embeddings (resp. immersions) homotopic through embeddings (resp. immersions) and  $f_0$  is a weakly Lagrangian embedding (resp. immersion), then  $f_1$  is also such.

We recall some basic properties of a weakly Lagrangian embedding.

PROPOSITION 2.1. For a weakly Lagrangian embedding  $f: L^n \to M^{2n}$ , from an oriented manifold L, the followings hold

- i)  $\nu(f) \cong (-1)^{n(n-1)/2}TL$ , as oriented vector bundles, where  $\nu(f)$  is the normal bundle of f with orientation defined in the usual way.
- ii) If L is a closed manifold and  $a = f_*([L]) \in H_n(M, \mathbb{Z})$ , then we have

$$a \cdot a = (-1)^{n(n-1)} \chi(L)$$

where  $[L] \in H_n(L,Z)$  denotes the fundamental class and  $a \cdot a$  is the Kronecker index  $\langle Da, a \rangle$  with D denoting the Poincaré isomorphism  $H_n(M,Z) \to H^n_{comp}(M,Z)$ .

The proof is a copy of that of Proposition 2, [5]. We note that i) above is true even if f is only a weakly Lagrangian *immersion*. On the other hand, we need the condition that f is an embedding for ii) above since in this case we make use of the normal neighborhood of  $f(L) \subset M$ , which is impossible if f is just an immersion.

## 3. Proofs of Theorem 1, 2

The following is the key lemma to prove Theorem 1.

LEMMA 3.1. Assume  $f: M^m \to P^{2m}$ ,  $g: N^n \to Q^{2n}$  are maps between smooth manifolds such that i) f is an embedding whose normal bundle has a nowhere vanishing section and ii) g is an immersion. Then  $f \times g: M \times N \to P \times Q$  is regularly homotopic to an embedding.

*Proof.* We may assume that g is completely regular (cf. [1]). Let  $y_1, y_2, \cdots$  and  $z_1, z_2, \cdots$  be distinct points in N such that  $g(y_i) = g(z_i)$ ,  $i = 1, 2, \cdots$ . Note that such points appear discretely.

We may construct (for example, using the exponential map) neighborhoods  $U_1, U_2, \cdots$  of  $y_1, y_2, \cdots$  which are diffeomorphic to the closed disc  $D^n$  and such that  $U_i \cap U_j = \phi$  if  $i \neq j$  and  $U_i \cap \{y_1, y_2, \cdots, z_1, z_2, \cdots\}$  =  $\{y_i\}, i = 1, 2, \cdots$ 

Let  $\delta: N \to [0,1]$  be a smooth function such that  $\delta(y_i) = 1, i = 1, 2, \cdots$  and  $\delta(N - \bigcup_{i=1,2,\cdots} U_i) = \{0\}.$ 

Note that the existence of nowhere vanishing section of the normal bundle is equivalent to the existence of a smooth embedding  $F: M \times [0,1] \to P$  such that F(x,0) = f(x).

Now consider the map

$$H: M \times N \times [0,1] \rightarrow P \times Q$$

defined by  $H(x, y, t) = (F(x, t\delta(y)), g(y)).$ 

It is straightforward to see that for each  $t \in [0,1]$ ,  $H_t: M \times N \to P \times Q$  is an immersion. Thus  $H_0, H_1$  are regularly homotopic to each other.

We show that  $H_1$  is an embedding as follows: Assume that  $H_1(x,y) = H_1(x',y')$ , that is,  $F(x,\delta(y)) = F(x',\delta(y'))$  and g(y) = g(y'), while  $(x,y) \neq (x',y')$ . If y = y', then we have  $F(x,\delta(y)) = F(x',\delta(y))$  and we may conclude x = x' since F is an embedding. Therefore, we have  $y \neq y'$ . Now, by assumption on g, g(y) = g(y') implies that  $y = y_i, y' = z_i$  (or  $y = z_i, y' = y_i$ ) for some i. But then we have  $\delta(y_i) = 1$ ,  $\delta(z_i) = 0$  and  $F(x,\delta(y)) = F(x',\delta(y'))$  is impossible since F is an embedding. This proves the Lemma.

As corollaries of the previous lemma, we obtain

Proof of Theorem 1. Let  $f: M \to \mathbb{C}^m$ ,  $g: N \to \mathbb{C}^n$  be the weakly Lagrangian embedding and the weakly Lagrangian immersion, respectively. Then  $f \times g: M \times N \to \mathbb{C}^m \times \mathbb{C}^n = \mathbb{C}^{m+n}$  is regularly homotopic



*Proof of* Theorem 2. According to Kawashima ([5]),  $S^n$  admits a weakly Lagrangian embedding if and only if n = 1, 3. Also according to Weinstein ([6]),  $S^n$  admits a Lagrangian immersion for any natural number n.

COROLLARY 3.2.  $S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}$  admits a weakly Lagrangian embedding into  $\mathbb{C}^{n_1+n_2+\cdots+n_k}$  if  $n_i=1$  or 3 for some  $i=1,2,\cdots,k$ .

Note that  $S^{n_1} \times S^{n_2} \times \cdots \times S^{n_k}$  admits a weakly Lagrangian embedding into  $\mathbb{C}^{n_1+n_2+\cdots+n_k}$ , but it does not admit any Lagrangian embedding into  $\mathbb{C}^{n_1+n_2+\cdots+n_k}$  if  $n_i=3$  for some i and  $n_i\neq 1$  for any  $i=1,2,\cdots k$ , since in this case  $\pi_1(S^{n_1}\times S^{n_2}\times\cdots\times S^{n_k})=1$ .

## 4. The case of $S^m \times S^n$

As a corollary of ii), Proposition 2.1 we have the following.

LEMMA 4.1. Let L be an orientable compact smooth n-manifold which admits a weakly Lagrangian embedding into  $\mathbb{C}^n$ . Then we have  $\chi(L) = 0$ .

Lemma 4.1 proves that, if both m,n are even,  $S^m \times S^n$  does not admit any weakly Lagrangian embedding since  $\chi(S^m \times S^n) \neq 0$ . In fact, the same result can also be obtained by i) of Proposition 2.1 since the tangent bundle of  $S^m \times S^n$  is non-trivial if both m,n are even, while the normal bundle of any embedding of  $S^m \times S^n$  is trivial if m,n > 1, which follows from the triviality of the normal bundle of the standard embedding of  $S^m \times S^n$  into  $\mathbb{C}^{m+n}$  and also from the following.

LEMMA 4.2. For any simply connected closed smooth m-manifold,  $m \geq 4$ , any two of its embeddings into  $\mathbb{C}^m$  are isotopic to each other through smooth embeddings.

Note that if two embeddings are isotopic to each other then the normal bundles of them are isomorphic. A proof of Lemma 4.2 is provided

below in this section. Note that  $S^2$  is the only simply connected 2-manifold and it does not admit any weakly Lagrangian embedding and also that any compact orientable 3-manifold is parallelizable. Therefore, we may summarize and generalize the discussions so far as follows.

PROPOSITION 4.3. Let M be a simply connected closed smooth m-manifold which admits an embedding into  $\mathbb{C}^m$  whose normal bundle is trivial. If M admits a weakly Lagrangian embedding into  $\mathbb{C}^m$ , then TM is trivial.

Note that, if the tangent bundle of a manifold is trivial, its Euler characteristic vanishes even if the converse is not true in general. Therefore we have obtained a sharper condition than the vanishing of the Euler characteristic for  $S^m \times S^n$  to admit a weakly Lagrangian embedding into  $\mathbb{C}^{m+n}$ ; its tangent bundle should be trivial.

However, we are not lucky enough here as the following holds.

FACT. The tangent bundle of  $S^m \times S^n$  is trivial if m or n is odd.

Therefore, even if neither of m, n is 1 nor 3, we cannot conclude that  $S^m \times S^n$  does not admit any weakly Lagrangian embedding into  $\mathbb{C}^{m+n}$  if one of m, n is odd. The problem is left open.

The above fact follows from the observation below.

Let M be a smooth m-manifold such that

- i) the tangent bundle TM is stably trivial and
- ii)  $TM \cong \xi + \epsilon_M^1$  for some vector bundle  $\xi$  over M of rank m-1.

Here  $\epsilon_M^1$  means the trivial vector bundle of rank 1 and  $\xi + \epsilon_M^1$  means the Whitney sum.

Let N denote another smooth n-manifold whose tangent bundle is stably trivial and consider the product manifold  $M \times N$ .

Observation. 
$$T(M \times N) \cong \epsilon_{M \times N}^{m+n}$$
.

Proof. It is well-known that

$$T(M \times N) \cong TM \times TN$$
.

By the assumption,

$$TM \times TN \cong (\xi + \epsilon_M^1) \times TN.$$

Let  $p_1, p_2$  denote the projections from  $M \times N$  to M, N, respectively. Then we have

$$(\xi + \epsilon_M^1) \times TN = p_1^*(\xi + \epsilon_M^1) + p_2^*TN \cong p_1^*\xi + p_1^*\epsilon_M^1 + p_2^*TN.$$

Now it is straightforward to see that

$$p_1^*\xi + p_1^*\epsilon_M^1 + p_2^*TN \cong p_1^*\xi + \epsilon_{M\times N}^1 + p_2^*TN \cong p_1^*\xi + p_2^*(TN + \epsilon_N^1).$$

By the assumption,

$$p_1^*\xi + p_2^*(TN + \epsilon_N^1) \cong p_1^*\xi + p_2^*(\epsilon_N^{n+1}).$$

Finally, we have the isomorphisms

$$p_1^*\xi + p_2^*(\epsilon_N^{n+1}) \cong p_1^*(\xi + \epsilon_M^{n+1}) \cong \epsilon_{M \times N}^{m+n}$$

which complete the proof.

To provide the postponed proof of Lemma 4.2, we will need the following by A. Haefliger [3].

THEOREM [Haefliger]. Assume V, X are smooth manifolds of respective dimensions n, k and assume V is compact. Suppose  $2k \geq 3(n+1)$ . Let  $f: V \to X$  be a continuous map such that f is an embedding in a neighborhood of  $\partial X$  and  $f(\partial V) \cap f(V - \partial V) = \phi$ . Assume  $\pi_i(f) = 0$  for  $0 \leq i \leq 2n - k + 1$ . Then f is homotopic to an embedding relative to a neighborhood of  $\partial V$ .

Also we need the following fact for which we refer to a work by A. Hatcher [4]. (This must be well known, perhaps with a slightly different condition on the dimensions, even if the authors had problem with finding a more appropriate reference.) In the following, a concordance F between  $f,g:M\to Q$  means a proper embedding  $F:M\times I\to Q\times I$  such that F(x,0)=(f(x),0) and F(x,1)=(g(x),1) for any  $x\in M$  and an isotopy means a homotopy through embeddings.

## Yanghyun Byun and Seunghun Yi

THEOREM [Hatcher]. Let Q, M be smooth manifolds with respective dimensions q, m. Assume there is a concordance  $F: M \times I \to Q \times I$  between two embeddings  $f, g: M \to Q$  and  $q - m \geq 3, q \geq 6$ . Then f, g are isotopic to each other.

*Proof.* According to A. Hatcher ([4]), in particular, Remark 3, p. 229 together with the second paragraph of §2), under the given condition, F is homotopic to the concordance  $f \times 1 : M \times I \to Q \times I$  relative to  $M \times \{0\}$  through concordances. Now restrict the homotopy at  $M \times \{1\} \equiv M$  to obtain the isotopy from g to f.

Proof of Lemma 4.2. Let M denote the manifold and  $f,g:M\to\mathbb{C}^m$  be the two embeddings. Then since  $\mathbb{C}^m$  is contractible there is a homotopy  $H:M\times I\to\mathbb{C}^m$  from f to g. Let  $\bar{H}:M\times I\to\mathbb{C}^m\times I$  denote the map defined by  $\bar{H}(x,t)=(H(x,t),t)$  for any  $(x,t)\in M\times I$ .

We apply the above theorem by Haefliger to conclude that  $\bar{H}$  is homotopic to a concordance  $F: M \times I \to \mathbb{C}^n \times I$  rel  $M \times \{0,1\}$ . Here a concordance means simply an embedding such that  $F^{-1}(X \times \{0,1\}) = M \times \{0,1\}$ . Note that, since M is simply connected and  $\mathbb{C}^n$  is contractible, we have  $\pi_i(\bar{H}) = \pi_i(f) = 0$  for i = 0,1,2 and 2(m+1) - (2m+1) + 1 = 2. Also note that  $2(2m+1) \geq 3(m+1+1)$  if  $m \geq 4$ .

However the concordance F implies the existence of an isotopy from f to g according to the above theorem by A. Hatcher since  $2m-m\geq 3$  and  $2m\geq 6$  for any  $m\geq 4$ .

ACKNOWLEDGMENT. The authors would like to thank the anonymous referee for his help in correcting some mistakes and improving the paper both in mathematics and in typography.

#### References

- M. Adachi, Embeddings and Immersions, Amer. Math. Soc., Providence, R. I., 1993.
- [2] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
- [3] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47–82.

## Weakly Lagrangian embedding and product manifolds

- [4] A. E. Hatcher, Concordance and isotopy of smooth embeddings in low codimensions, Invent. Math. 21 (1973), 223-232.
- [5] T. Kawashima, Some remarks on Lagrangian imbeddings, J. Math. Soc. Japan 33 (1981), 281-294.
- [6] A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Ann. Math. 98 (1973), 377-410.

YANGHYUN BYUN, DEPARTMENT OF MATHEMATICS, HANYANG UNIVERSITY, SUNGDONG-GU, SEOUL 133-791, KOREA E-mail: yhbyun@fermat.hanyang.ac.kr

SEUNGHUN YI, LIBERAL ARTS AND SCIENCE (MATHEMATICS), YOUNGDONG UNIVERSITY, YOUNGDONG, CHUNGBUK, 370-800, KOREA *E-mail*: seunghun@kachi.yit.ac.kr