• Title/Summary/Keyword: C-Fos genes

Search Result 71, Processing Time 0.025 seconds

DNA Microarray Analysis of Immediate Response to EGF Treatment in Rat Schwannoma Cells

  • OH, Min-Kyu;Scoles, Daniel R.;Pulst, Stefan-M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.444-450
    • /
    • 2005
  • Epidermal growth factor (EGF) activates many intracellular effector molecules, which subsequently influence the expression levels of many genes involved in cell growth, apoptosis and signal transduction, etc. In this study, the early response of gene expressions due to EGF treatment was monitored using oligonucleotide DNA microarrays in rat schwannoma cell lines. An immunoblotting experiment showed the successful activation of EGF receptors and an effector protein, STAT5, due to EGF treatment. The microarray study showed that 35 genes were significantly induced and 2 were repressed within 60 min after the treatment. The list of induced genes included early growth response 1, suppressor of cytokine signaling 3, c-fos, interferon regulatory factor 1 and early growth response 2, etc. According to the microarray data, six of these were induced by more than 10-fold, and showed at least two different induction patterns, indicating complicated regulatory mechanisms in the EGF signal transduction.

Gene Expression Profiling of Rewarding Effect in Methamphetamine Treated Bax-deficient Mouse

  • Ryu, Na-Kyung;Yang, Moon-Hee;Jung, Min-Seok;Jeon, Jeong-Ok;Kim, Kee-Won;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.475-485
    • /
    • 2007
  • Methamphetamine is an illicit drug that is often abused and can cause neuropsychiatric and neurotoxic damage. Repeated administration of psychostimulants such as methamphetamine induces a behavioral sensitization. According to a previous study, Bax was involved in neurotoxicity by methamphetamine, but the function of Bax in rewarding effect has not yet been elucidated. Therefore, we have studied the function of Bax in a rewarding effect model. In the present study, we treated chronic methamphetamine exposure in a Bax-deficient mouse model and examined behavioral change using a conditioned place preference (CPP) test. The CPP score in Bax knockout mice was decreased compared to that of wild-type mice. Therefore, we screened for Bax-related genes that are involved in rewarding effect using microarray technology. In order to confirm microarray data, we applied the RT-PCR method to observe relative changes of Bcl2, a pro-apoptotic family gene. As a result, using our experiment microarray, we selected genes that were associated with Bax in microarray data, and eventually selected the Tgfbr2 gene. Expression of the Tgfbr2 gene was decreased by methamphetamine in Bax knockout mice, and the gene was overexpressed in Bax wild-type mice. Additionally, we confirmed that Creb, FosB, and c-Fos were related to rewarding effect and Bax using immunohistochemistry.

DNA Methylation in Brain and Liver Tissues of Mice Infected with Scrapie Agent (스크래피에 감염된 마우스의 뇌 및 간조직에서의 DNA Methylation)

  • Choi, E.K.;Uyeno, S.;Ono, T.;Carp, R.I.;Kim, Y.S.
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 1998
  • DNA methylation degree in the several murine brain and liver genes of different ages and after scrapie infection have been examined by using methylation-sensitive restriction endonuclease digestion. We found that the methylation of c-fos and c-myc in the brain and liver was increased during the late fetal to one month postnatal developmental periods. However, those of the SGP-2, $S100{\beta}$, APP950, PrP, and APLP1 genes were decreased at the same periods. The comparison of the DNA methylation patterns between scrapie infected brains and controls demonstrated there is no significant difference in methylation degree of scrapie-infected brains. These observations indicate that DNA methylation might be importantly related to the aging process. The scrapie-infected murine brain was not significantly developed more senescent than the same age-controls did.

  • PDF

Protective Effect of HP08-0111 on Ligature-Induced Periodontitis

  • Park, Young-Ran;Cho, Hyoung-Kwon;Soh, Yun-Jo
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.145-151
    • /
    • 2010
  • Periodontitis is an inflammatory disorder of the periodontium and is characterized by destruction of the tooth supporting tissues, mediated by the upregulation of synthesis and release of a variety of pro-inflammatory factors. Inflammatory cytokines and prostaglandins upregulate RANKL and its subsequent binding to RANK stimulates osteoclast formation, resorption activity, and survival. In our present study, we investigated the effects of HP08-0111, composed of Coptis japonica (Thunb.) Makino, vitamin C and vitamin E, upon inflammatory responses, osteoclastogenesis and alveolar bone loss. HP08-0111 decreased the expression of IL-1$\beta$ and COX2 on LPS-induced RAW 264.7 cells and inhibited osteoclast-specific genes such as c-Fos, MMP-9, and TRAP. HP08-0111 also exhibited protective effects against alveolar bone loss in rats with ligature-induced periodontitis. Our results suggest that HP08-0111 is potentially an important therapeutic tool for the treatment of disorders associated with bone loss such as periodontitis.

Analysis of MAPK Signaling Pathway Genes in the Intestinal Mucosal Layer of Necrotic Eenteritis-Afflicted Two Inbred Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.199-209
    • /
    • 2017
  • Mitogen-activated protein kinase (MAPK) signaling pathways play a key role in innate immunity, inflammation, cell proliferation, cell differentiation, and cell death. The main objective of this study was to investigate the expression level of candidate MAPK pathway genes in the intestinal mucosal layer of two genetically disparate chicken lines (Marek's disease-resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE). Using high-throughput RNA sequencing, we investigated 178 MAPK signaling pathway related genes that were significantly and differentially expressed between the intestinal mucosal layers of the NE-afflicted and control chickens. In total, 15 MAPK pathway genes were further measured by quantitative real-time PCR(qRT-PCR) and the results were consistent with the RNA-sequencing data. All 178 identified genes were annotated through Gene Ontology and mapped onto the KEGG chicken MAPK signaling pathway. Several key genes of the MAPK pathway, ERK1/2, JNK1-3, p38 MAPK, MAP2K1-4, $NF-{\kappa}B1/2$, c-Fos, AP-1, Jun-D, and Jun, were differentially expressed in the two chicken lines. Therefore, we believe that RNA sequencing and qRT-PCR analysis provide resourceful information for future studies on MAPK signaling of genetically disparate chicken lines in response to pathogens.

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Sooyeon;Heo, Jubi;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.964-974
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

Effects of Kanghwalsokdan-tang Gamibang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation (강활속단탕가미방(羌活續斷湯加味方)이 파골세포 분화 및 조골세포 활성에 미치는 영향)

  • Jung, Eun-Hye;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.29 no.2
    • /
    • pp.66-82
    • /
    • 2016
  • Objectives : This study was conducted to evaluate the effect of Kanghwalsokdan-tang Gamibang water extract (KSG) on osteoporosis. Methods : RANKL-stimulated RAW 264.7 was used to evaluate inhibitory effect of KSG osteoclast differentiation and gene expression. We counted TRAP (+) multinucleated cells and measured TRAP activity and mRNA expressions of osteoclastogenesis-related genes (NFATc1, MITF, JNK1, cathepsin K, MMP-9) to figure out the effect of KSG on osteoclast. Osteoblastogenesis was also determined in rat calvarial cell. Alkaline phosphatase (ALP) activity, bone matrix protein and collagen synthesis were measured by using murine calvarial cell. Results : KSG inhibited the differentiation of osteoclast precursor cell and expression of genes related osteoclastogenesis like NAFTc1, MITF, c-fos, JNK1, Cathepsin K, MMP-9 and TRAP. KSG increased cell division and function of osteoblast separated from the skull of a rat and ALP synthesis, biosynthesis of bone matrix protein and collagen. Conclusions : Reviewing these results, KSG has efficacy on osteoclast inhibition and osteoblast activation. After further study, KSG will be able to apply for osteoporosis treatment and prevention.

Inhibitory Effect of Paeoniae Radix Alba Ethanol Extract on Osteoclast Differentiation and Formation (백작약 에탄올 추출물의 파골세포 분화 및 생성 억제 작용)

  • Park, Bora;Park, Geun Ha;Gu, Dong Ryun;Ko, Wonmin;Kim, Youn-Chul;Lee, Seoung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • Bone destruction is a pathological symptom of some chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis. Inflammation-induced bone loss of these diseases results from increased number and activity of osteoclasts. Paeoniae Radix Alba has been used in korean traditional medicine to treat disease including inflammation, gynecopathy and various pain. However, these effects have not been tested on osteoclasts, the bone resorbing cells that regulate bone metabolism. Here, we investigated the effects of Paeoniae Radix Alba ethanol extract (PRAE) on receptor activator of nuclear factor-kappa B ligand (RANKL)-mediated osteoclast differentiation and formation. Osteoclast differentiation and formation were measured by tartrate resistant acidic phosphatase (TRAP) staining and TRAP solution assay. The treatment of PRAE on bone marrow derived macrophages (BMMs), which is known as osteoclast precursor cells, inhibited osteoclast differentiation and formation in a dose-dependent manner. In addition, the expression of osteoclast differentiation marker genes was suppressed by PRAE treatment. This inhibitory effect of PRAE resulted from significant repression of c-Fos expression, and subsequent reduction of NFATc1 expression which was previously reported as a master transcription factor for osteoclastogenesis in vitro and in vivo. These results demonstrate that PRAE negatively regulates osteoclast differentiation and formation and suggest that PRAE can be used as a potent preventive or therapeutic candidate for various bone diseases, such as postmenopausal osteoporosis, periodontitis and rheumatoid arthritis.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Effect of Spatholobus Suberectus Extract (SSE) on RANKL-treated RAW264.7 and LPS-induced Bone Loss (계혈등 에탄올 추출물의 RANKL 처리 RAW264.7 세포의 분화와 염증성 골 손실에 미치는 영향)

  • Dae Joong Lee;Jong Hyun Hwang;Do Hwi Park;Ki Sung Kang;Chan Yong Jeon;Gwi Seo Hwang
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.6
    • /
    • pp.1134-1148
    • /
    • 2022
  • Purpose: We evaluated whether Spatholobus suberectus extract (SSE) can be used as a means of preventing and treating osteoporosis by measuring its effect on osteoclast differentiation, gene expression, and bone resorption. Methods: SSE was used to examine the effect on RAW 264.7 cells stimulated with RANKL to induce bone resorption. The inhibitory effect of TRAP formation and the expression of the bone resorption factors TRAP, cathepsin K, and MMP-9 during differentiation were measured. The effects on the differentiation-related factors NFATc and TRAIL and on the expression of OC-STAMP, DC-STAMP, ATP6v0d2, MITF, c-Fos, and inflammation-related factors were also evaluated. The effect on bone resorption was evaluated by culturing RANKL-treated osteoclasts on artificial bone fragments and observing the resulting resorption traces. The effect on bone damage in experimental animals was also measured. Results: SSE inhibited the differentiation of RANKL-stimulated osteoclasts into osteoclasts and suppressed the expression of cathepsin K, TRAP, MMP-9, NFATc1, TRAIL, MITF, OC-STAMP, DC-STAMP, ATP6v0d2, and c-Fos genes. Bone pore formation due to osteoclast action was also inhibited, and LPS-induced bone loss was suppressed in animal experiments. Conclusions: SSE could be useful for the prevention or treatment of osteoporosis by inhibiting osteoclast differentiation and bone resorption and suppressing bone loss induced in experimental animals. However, studies of larger populations are required.