• 제목/요약/키워드: C-Ag nanoparticles

검색결과 80건 처리시간 0.02초

Synthesis, characterization and potential applications of Ag@ZnO nanocomposites with S@g-C3N4

  • Ahmad, Naveed;Javed, Mohsin;Qamar, Muhammad A.;Kiran, Umbreen;Shahid, Sammia;Akbar, Muhammad B.;Sher, Mudassar;Amjad, Adnan
    • Advances in materials Research
    • /
    • 제11권3호
    • /
    • pp.225-235
    • /
    • 2022
  • It includes the synthesis of pristine ZnO nanoparticles and a series of Ag-doped zinc oxide nanoparticles was carried out by reflux method by varying the amount of silver (1, 3, 5, 7 and 9% by mol.). The morphology of these nanoparticles was investigated by SEM, XRD and FT-IR techniques. These techniques show that synthesized particles are homogenous spherical nanoparticles having an average particle size of about 50-100 nm along with some agglomeration. The photocatalytic activity of the ZnO nanoparticles and Ag doped ZnO nanoparticles were investigated via photodegradation of methylene blue (MB) as a standard dye. The data from the photocatalytic activity of these nanoparticles show that 7% Ag-doped ZnO nanoparticles exhibit much enhanced photocatalytic activity as compared to pristine ZnO nanoparticles and other percentages of Ag-doped ZnO nanoparticles. Furthermore, 7% Ag-doped ZnO was made composites with sulfur-doped graphitic carbon nitride by physical mixing method and a series of nanocomposites were made (3.5, 7.5, 25, 50, 75% by weight). It was observed that the 25% composites exhibited better photocatalytic performance than pristine S-g-C 3 N 4 and pure 7% Ag-doped ZnO. Tauc's plot also supports the photodegradation results.

Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2592-2596
    • /
    • 2012
  • Cysteine capped silver nanoparticles (Cys-AgNPs) have been synthesized by employing electrochemically active biofilm (EAB), $AgNO_3$ as precursor and sodium acetate as electron donor in aqueous solution at $30^{\circ}C$. Cys-AgNPs of 5-10 nm were synthesized and characterized by UV-Vis, FT-IR, XRD and TEM. Capping of the silver nanoparticles with cysteine provides stability to nanoparticles by a thiolate bond between the amino acid and the nanoparticle surface and hydrogen bonding among the Cys-AgNPs. In addition, the antibacterial effects of as-synthesized Cys-AgNPs have been tested against two pathogenic bacteria Escherichia coli (O157:H7) and Pseudomonas aeruginosa (PAO1). The results demonstrate that the as-synthesized Cys-AgNPs can proficiently inhibit the growth and multiplication of E. coli and P. aeruginosa.

Light Scattering Effect of Incorporated PVP/Ag Nanoparticles on the Performance of Small-Molecule Organic Solar Cells

  • 허일수;박다솜;임상규
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.221-221
    • /
    • 2012
  • Small-molecule organic photovoltaic cells have recently attracted growing attention due to their potential for the low-cost fabrication of flexible and lightweight solar modules. The PVP/Ag nanoparticles were synthesized by the reaction of poly vinylpyrrolidone (PVP) and silver nitrate at $150^{\circ}C$. In the reaction, the size of the nanoparticles was controlled by relative mole fractions between PVP and Ag. The PVP/Ag nanoparticles with various sizes were then spin coated on the patterned ITO glass prior to the deposition of the PEDOT:PSS hole transport layer. The scattering of the incident light caused by these incorporated nanoparticles resulted in an increase in the path length of the light through the active layer and hence the enhancement of the light absorption. This scattering effect increased as the size of the nanoparticles increased, but it was offset by the decrease in total transmittance caused by the non-transparent nanoparticles. As a result, the maximum power conversion efficiency, 0.96% which was the value enhanced by 14% compared to the cell without incorporation of nanoparticles, was obtained when the mole fraction of PVP:Ag was 24:1 and the size of the nanoparticles was 20~40 nm.

  • PDF

이중 전기방사법을 이용하여 SnO2-Sn-Ag3Sn 나노 입자가 균일하게 내재된 탄소 나노섬유의 합성 (Synthesis of Well-Distributed SnO2-Sn-Ag3Sn Nanoparticles in Carbon Nanofibers Using Co-Electrospinning)

  • 안건형;안효진
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.143-148
    • /
    • 2013
  • Well-distributed $SnO_2$-Sn-$Ag_3Sn$ nanoparticles embedded in carbon nanofibers were fabricated using a co-electrospinning method, which is set up with two coaxial capillaries. Their formation mechanisms were successfully demonstrated. The structural, morphological, and chemical compositional properties were investigated by field-emission scanning electron spectroscopy (FESEM), bright-field transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, to obtain well-distributed $SnO_2$ and Sn and $Ag_3Sn$ nanoparticles in carbon nanofibers, the relative molar ratios of the Ag precursor to the Sn precursor including 7 wt% polyacrylonitrile (PAN) were controlled at 0.1, 0.2, and 0.3. The FESEM, bright-field TEM, XRD, and XPS results show that the nanoparticles consisting of $SnO_2$-Sn-$Ag_3Sn$ phases were in the range of ~4 nm-6 nm for sample A, ~5 nm-15 nm for sample B, ~9 nm-22 nm for sample C. In particular, for sample A, the nanoparticles were uniformly grown in the carbon nanofibers. Furthermore, when the amount of the Ag precursor and the Sn precursor was increased, the inorganic nanofibers consisting of the $SnO_2$-Sn-$Ag_3Sn$ nanoparticles were formed due to the decreased amount of the carbon nanofibers. Thus, well-distributed nanoparticles embedded in the carbon nanofibers were successfully synthesized at the optimum molar ratio (0.1) of the Ag precursor to the Sn precursor after calcination of $800^{\circ}C$.

Synthesis of Ni-Ag Core-shell Nanoparticles by Polyol process and Microemulsion Process

  • Nguyen, Ngoc Anh Thu;Park, Joseph G.;Kim, Sang-Hern
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2865-2870
    • /
    • 2013
  • Ni-Ag core-shell nanoparticles were synthesized by polyol process and microemulsion technique successfully. In the polyol process, a chemical reduction method for preparing highly dispersed pure nickel and Ag shell formation have been reported. The approach involved the control of reaction temperature and reaction time in presence of organic solvent (ethylene glycol) as a reducing agent for Ag cation with poly(vinyl-pyrrolidone) (PVP. Mw = 40000) as a capping agent. In microemulsion method, the emulsion was prepared by water/cetyltrimetylammonium bromide (CTAB)/cyclohexane. The size of microemulsion droplet was determined by the molar ratio of water to surfactant (${\omega}_o$). The core-shell formation along with the change in structural phase and stability against oxidation at high temperature heat treatments of nanoparticles were investigated by X-ray diffraction and TEM analysis. Under optimum conditions the polyol process gives the Ni-Ag core-shell structures with 13 nm Ni core covered with 3 nm Ag shell, while the microemulsion method gives Ni core diameter of 8 nm with Ag shell of thickness 6 nm. The synthesized Ni-Ag core-shell nanoparticles were stable against oxidation up to $300^{\circ}C$.

Nano-sized Effect on the Magnetic Properties of Ag Clusters

  • Jo, Y.;Jung, M.H.;Kyum, M.C.;Park, K.H.;Kim, Y.N.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.160-163
    • /
    • 2006
  • We have prepared crystalline Ag nanoparticles with an average size of 4 nm in diameter by using an inductively coupled plasma reactor equipped with the liquid nitrogen cooling system. Our magnetic data show that the nano-sized effect of Ag nanoparticles on the magnetic properties is ferromagnetic, instead of a diamagnetic component of the Ag bulk and a superparamagnetic component of magnetic nanoparticles. We have also studied the magnetic properties of Ag-Cu nanocomposites with an opposite concentration profile between surface and core. These comparisons indicate that the ferromagnetic component strongly depends on the surface of Ag nanoparticles, while the paramagnetic component is strongly affected by the outer oxide layer, with the background of a diamagnetic component from the core of Ag.

졸-겔공정/광증착법을 이용한 Ag-Doped TiO2 합성 및 광촉매 특성 (Photocatalytic Properties of the Ag-Doped TiO2 Prepared by Sol-Gel Process/Photodeposition)

  • 김병민;김정식
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.73-78
    • /
    • 2016
  • $TiO_2$ nanoparticles were synthesized by a sol-gel process using titanium tetra isopropoxide as a precursor at room temperature. Ag-doped $TiO_2$ nanoparticles were prepared by photoreduction of $AgNO_3$ on $TiO_2$ under UV light irradiation and calcinated at $400^{\circ}C$. Ag-doped $TiO_2$ nanoparticles were characterized for their structural and morphological properties by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photocatalytic properties of the $TiO_2$ and Ag-doped $TiO_2$ nanoparticles were evaluated according to the degree of photocatalytic degradation of gaseous benzene under UV and visible light irradiation. To estimate the rate of photolysis under UV (${\lambda}=365nm$) and visible (${\lambda}{\geq}410nm$) light, the residual concentration of benzene was monitored by gas chromatography (GC). Both undoped/doped nanoparticles showed about 80 % of photolysis of benzene under UV light. However, under visible light irradiation Ag-doped $TiO_2$ nanoparticles exhibited a photocatalytic reaction toward the photodegradation of benzene more efficient than that of bare $TiO_2$. The enhanced photocatalytic reaction of Ag-doped $TiO_2$ nanoparticles is attributed to the decrease in the activation energy and to the existence of Ag in the $TiO_2$ host lattice, which increases the absorption capacity in the visible region by acting as an electron trapper and promotes charge separation of the photoinduced electrons ($e^-$) and holes ($h^+$). The use of Ag-doped $TiO_2$ nanoparticles preserved the option of an environmentally benign photocatalytic reaction using visible light; These particles can be applicable to environmental cleaning applications.

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • 제28권1호
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

전기선폭발법을 이용한 core/shell 구조 Ag/C 나노 입자의 제조 및 열처리조건에 따른 특성 (Synthesis of Core/shell Structured Ag/C Nano Particles and Properties on Annealing Conditions)

  • 전수형;엄영랑;이창규
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.295-301
    • /
    • 2010
  • Multi shell graphite coated Ag nano particles with core/shell structure were successfully synthesized by pulsed wire evaporation (PWE) method. Ar and $CH_4$ (10 vol.%) gases were mixed in chamber, which played a role of carrier gas and reaction gas, respectively. Graphite layers on the surface of silver nano particles were coated indiscretely. However, the graphite layers are detached, when the particles are heated up to $250^{\circ}C$ in the air atmosphere. In contrast, the graphite coated layer was stable under Ar and $N_2$ atmosphere, though the core/shell structured particles were heated up to $800^{\circ}C$. The presence of graphite coated layer prevent agglomeration of nanoparticles during heat treatment. The dispersion stability of the carbon coated Ag nanoparticles was higher than those of pure Ag nanoparticles.

저농도 은이 함유된 LTCC 전극공정부산물로부터 은 회수 및 나노입자 제조 연구 (Study on the Recovery Silver and Nanoparticles Synthesis from LTCC By-products of Lowly Concentrated Silver)

  • 주소영;안낙균;이찬기;윤진호
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.232-239
    • /
    • 2018
  • In this paper, the recovery and nanoparticle synthesis of Ag from low temperature co-fired ceramic (LTCC) by-products are studied. The effect of reaction behavior on Ag leaching conditions from the LTCC by-products is confirmed. The optimum leaching conditions are determined to be: 5 M $HNO_3$, a reaction temperature of $75^{\circ}C$, and a pulp density of 50 g/L at 60 min. For the selective recovery of Ag, the [Cl]/[Ag] equivalence ratio experiment is performed using added HCl; most of the Ag (more than 99%) is recovered. The XRD and MP-AES results confirm that the powder is AgCl and that impurities are at less than 1%. Ag nanoparticles are synthesized using a chemical reduction process for recycling, $NaBH_4$ and PVP are used as reducing agents and dispersion stabilizers. UV-vis and FE-SEM results show that AgCl powder is precipitated and that Ag nanoparticles are synthesized. Ag nanoparticles of 100% Ag are obtained under the chemical reaction conditions.