• Title/Summary/Keyword: C doping

Search Result 902, Processing Time 0.031 seconds

은 도핑 효과를 이용한 그래핀 투명 전도성 필름의 전기적 특성 향상

  • Jeong, Sang-Hui;Lee, Su-Il;Kim, Yu-Seok;Song, U-Seok;Kim, Seong-Hwan;Cha, Myeong-Jun;Park, Sang-Eun;Min, Gyeong-Im;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.566-566
    • /
    • 2012
  • 그래핀(Graphene)은 모든 탄소 동소체의 기본구성 요소로 2 차원 결정구조를 가지며, 양자홀 효과(quantum Hall effect), 뛰어난 열 전도도, 고 탄성, 광학적 투과성 등과 같은 탁월한 물리적 성질을 보이는 물질이다. 이러한 그래핀의 우수한 특성은 전계 효과 트랜지스터(field effect transistor), 화학/바이오 센서, 투명 전극(transparent electrode) 등의 다양한 전자소자를 개발하는 응용 가능하다. 그 중, 그래핀 투명전극의 제조는 가장 응용가능성이 높은 분야이다. 현재 투명전극 물질로는 인듐-주석 산화물(indium tin oxide; ITO)가 널리 이용되고 있으나, 인듐의 고갈로 인한 공급부족 문제 및 고 생산비용, 휘어지지 않는 취성 등의 단점을 지니고 있다. 따라서, 우수한 광학적 투과성과 전기전도성을 지닌 그래핀이 ITO의 대체 물질로서 각광받고 있다.[1-5] 본 연구에서는 그래핀의 투명전도필름의 응용을 위해 면저항을 낮추기 위한 방법으로 화학적 도핑(doping)을 이용하였다. 그래핀은 구리(copper; Cu) 호일을 촉매로 사용하여 열 화학증착법(Thermal Chemical Vapor Deposition)을 이용하여 합성하였다. 합성된 그래핀은 PMMA(Poly(methyl methacrylate)) 전사법을 이용하여 산화실리콘(SiO2) 기판에 전사 후, 염화은(AgCl)과 클로로벤젠(C6H5Cl)으로 만든 콜로이드(colloid) 용액에 디핑(dipping)하여 그래핀에 은 입자를 도핑 하였다. 그 결과, 은 입자 도핑 농도에 따라 면저항이 감소하는 양상을 보였다. 제작된 그래핀 투명전도성 필름의 투과도는 자외선-가시광선-근적외선 분광법(UV-Vis-NIR spectroscopy)를 이용하여 측정하였고, 라만 분광법(Raman spectroscopy)을 통해 그래핀 필름의 질적 우수성과 성장 균일도를 조사하였다.

  • PDF

Comparison of the Detection Efficiency $a-Se_{1-x}As_x$ in X-ray Detection Sensor of $Gd_2O_2S(Eu^{2+})/a$-Se Structure ($Gd_2O_2S(Eu^{2+} )/a$-Se$ 구조의 X선 검출 센서에서 $a-Se_{1-x}As_x$의 검출효율 비교)

  • Kang, Sang-Sik;Park, Ji-Koon;Lee, Dong-Gil;Mun, Chi-Wung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.436-439
    • /
    • 2002
  • Recently, It has performed that the basic research of the photoconductive material and the development and application of the digital radiograph detector which is divided into the direct and indirect method. The objective of this study investigate the effect of the electric characteristic about changing the composition of Arsenic in hybrid detector system for compensating a defect of conventional. We fabricated samples using the amorphous Selenium and Arsenic alloy with various concentrations of the Arsenic{seven step 0.1%, 0.3%, 0.5%, 1%, 1.5%, 3%, 5%). And using EFIRON optical adhesives the formed multi-layer$(Gd_{2}O_{2}S(Eu^{2+}))$ composed phosphor layer. X-ray and light sensitivity was measured to study x-ray response characteritics. As results, highest value was measured as output net charge and SNR were $315.7pC/cm^2/mR$ and 99.4 at 0.3%As doping ratio.

  • PDF

Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity (고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성)

  • Jo, Hyun-Gi;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2020
  • Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.

Reduced graphene oxide field-effect transistor for biomolecule detection and study of sensing mechanism

  • Kim, D.J.;Sohn, I.Y.;Kim, D.I.;Yoon, O.J.;Yang, C.W.;Lee, N.E.;Park, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.431-431
    • /
    • 2011
  • Graphene, two dimensional sheet of sp2-hybridized carbon, has attracted an enormous amount of interest due to excellent electrical, chemical and mechanical properties for the application of transparent conducting films, clean energy devices, field-effect transistors, optoelectronic devices and chemical sensors. Especially, graphene is promising candidate to detect the gas molecules and biomolecules due to the large specific surface area and signal-to-noise ratios. Despite of importance to the disease diagnosis, there are a few reports to demonstrate the graphene- and rGO-FET for biological sensors and the sensing mechanism are not fully understood. Here we describe scalable and facile fabrication of rGO-FET with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}1$-antichymotrypsin (PSA-ACT) complex, in which the ultrathin rGO sensing channel was simply formed by a uniform self-assembly of two-dimensional rGO nanosheets on aminated pattern generated by inkjet printing. Sensing characteristics of rGO-FET immunosensor showed the highly precise, reliable, and linear shift in the Dirac point with the analyte concentration of PSA-ACT complex and extremely low detection limit as low as 1 fg/ml. We further analyzed the charge doping mechanism, which is the change in the charge carrier in the rGO channel varying by the concentration of biomolecules. Amenability of solution-based scalable fabrication and extremely high performance may enable rGO-FET device as a versatile multiplexed diagnostic biosensor for disease biomarkers.

  • PDF

Dependence of the Structural, Electrical, and Optical Properties of Al-doped ZnO Films for Transparent Conductors on the Process Atmosphere in Magnetron Sputtering (마그네트런 스퍼터링법으로 증착한 투명전극용 Al도핑된 ZnO의 공정 분위기에 따른 구조적, 전기적, 광학적 특성비교)

  • Yim, Keun-Bin;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.518-520
    • /
    • 2005
  • Effects of the $O_2/Ar$ flow ratio in the sputtering process on the crystallinity, surface roughness, carrier concentration, carrier mobility, and optical properties of Al-doped ZnO thin films deposited on sapphire (001) substrates by RF magnetron sputtering were investigated. XRD spectra showed a preferred orientation along the c-axis and a minimum FWHM of the (002) XRD intensity peak for the $O_2/Ar$ flow ratio of 0.5. The (101)peak also appeared and the degree of preferred orientation decreased as the $O_2/Ar$ flow ratio increased from 0.5 to 1.0. AFM analysis results showed that the surface roughness was lowest at the $O_2/Ar$ flow ratio of 0.5 and tended to increase owing to the increase of the grain size as the $O_2/Ar$ flow ratio increased further. According to the Hall measurement results the carrier concentration and carrier mobility of the fan decreased and thus the resistivity increased as the $O_2/Ar$ flow ratio increased. The transmittance of the ZnO:Al film deposited on the glass substrate was characteristic of a standing wave. The transmittance increased as the $O_2/Ar$ flow ratio in-RF magnetron sputtering increased up to 0.5. Considering the effects of the $O_2/Ar$ flow ratio on the surface roughness, electrical resistivity and transmittance properties of the ZnO:Al film the optimum $O_2/Ar$ flow ratio was 0.5 in the RF magnetron sputter deposition of the ZnO:Al film.

Fabrication of Zn-treated ACF/TiO2 Composites and Their Photocataytic Activity for Degradation of Methylene Blue

  • Go, Yu-Gyoung;Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.142-150
    • /
    • 2009
  • In this paper, non-treated ACF (Activated Carbon Fiber) /$TiO_2$ and Zn-treated ACF/$TiO_2$ were prepared. The prepared composites were characterized in terms of their structural crystallinity, elemental identification and photocatalytic activity. XRD patterns of the composites showed that the non-treated ACF/$TiO_2$ composite contained only typical single and clear anatase forms while the Zn-treated ACF/$TiO_2$ contained a mixed anatase and rutile phase with a unique ZnO peak. SEM results show that the titanium complex particles are uniformly distributed on and around the fiber and that the titanium complex particles are more regularly distributed on and around the ACF surfaces upon an increase of the $ZnCl_2$ concentration. These EDX spectra show the presence of peaks from the C, O and Ti elements. Moreover, peaks of the Zn element were observed in the Zn-treated ACF/$TiO_2$ composites. The prominent photocatalytic activity of the Zn-treated ACF/$TiO_2$ can be attributed to the three different effects of photo-degradation: doping, absorptivity by an electron transfer, and adsorptivity of porous ACFs between the Zn-$TiO_2$ and Zn-ACF.

Magnetic and Electrical Properties of Ln0.7Ca0.3MnO3 (Ln = Nd, Sm, La) (Ln0.7Ca0.3MnO3(Ln = Nd, Sm, La)의 자기적 전기적 특성)

  • Chon, Gom-Bai;Im, Hung-Su;Lee, Chan-Gyu;Koo, Bon-Heun;Lee, Sang-Min;Jung, Myung-Hwa;Jo, Young-Hun
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.203-206
    • /
    • 2007
  • Effects of doping rare earth elements on Ln site of $Ln_{0.7}Ca_{0.3}MnO_3$ (Ln = N d, Sm and La) were examined from structure, magnetic and electrical properties. Size of a-axis increased as following order of La < Nd < Sm, whereas c-axis was not much changed. Curie temperatures of 170 K for $Nd_{0.7}Ca_{0.3}MnO_3$, 110 K for $Sm_{0.7}Ca_{0.3}MnO_3$ and 250 K for $La_{0.7}Ca_{0.3}MnO_3$ were obtained. This result coincides with change of Mn-O bond length causing by a-axis lattice constant. The highest magnetroresistance ratios were 22% at 77 K for $Sm_{0.7}Ca_{0.3}MnO_3$, 32% at 110 K for $Nd_{0.7}Ca_{0.3}MnO_3$, and 33% at 180 K for $La_{0.7}Ca_{0.3}MnO_3$.

Effects of ZrO2 Addition on Optical and Electrical Properties of MgO Films as a Protective Layer for AC PDPs (ZrO2 첨가에 따른 AC PDP 보호막용 MgO 박막의 광학적 전기적 특성)

  • Kim, Chang-Il;Jung, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Choi, Eun-Ha;Jung, Seok;Kim, Jeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.422-426
    • /
    • 2008
  • The effects of an addition of $ZrO_2$ on the microstructure and electrical properties of MgO films as a protective layer for AC plasma display panels were investigated. MgO + a 200 ppm $ZrO_2$ protective layer prepared by e-beam evaporation exhibited a secondary electron emission coefficient ($\gamma$) that was improved by 21% compared to that of a pure MgO protective layer. The relative density and Vickers hardness increased with a further addition of $ZrO_2$. These results suggest that the discharge properties and optical properties of MgO protective layers are closely related to the relative density and Vickers hardness. The good optical and electrical properties of $\gamma$, at 0.080, a grain size of $19\;{\mu}m$ and an optical transmittance of 91.93 % were obtained for the MgO + 200 ppm $ZrO_2$ protective layer sintered at $1700^{\circ}C$ for 5 hrs.

Optical and microstructural behaviors in the GaN-based LEDs structures with the p-GaN layers grown at different growth temperatures (GaN 기반 LED구조의 p-GaN층 성장온도에 따른 광학적, 결정학적 특성 평가)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Han, Won-Suk;Ahn, Cheol-Hyoun;Choi, Mi-Kyung;Cho, Hyung-Koun;Lee, Ju-Young;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.144-144
    • /
    • 2008
  • Blue light emitting diode structures consisting of the InGaN/GaN multiple quantum wells were grown by metalorganic chemical vapor deposition at different growth temperatures for the p-GaN contact layers and the influence of growth temperature on the emission and microstructural properties was investigated. The I-V and electroluminescence measurements showed that the sample with a p-GaN layer grown at $1084^{\circ}C$ had a lower electrical turn-on voltage and series resistance, andenhanced output power despite the low photoluminescence intensity. Transmission electron microscopy (TEM) revealed that the intense electro luminescence was due to the formation of a p-GaN layer with an even distribution of Mg dopants, which was confirmed by TEM image contrast and strain evaluations. These results suggest that the growth temperature should be optimized carefully to ensurethe homogeneous distribution of Mg as well as the total Mg contents in the growth of the p-type layer.

  • PDF

Study on Ohmic resistance of Zn-doping InP using RTA method (RTA 방법에 의해 Zn 도핑된 InP의 오믹저항 특성연구)

  • Kim, H.J.;Kim, I.S.;Kim, T.U.;Kim, S.T.;Kim, S.H;Ki, H.C.;Lee, K.M.;Yang, M.H.;Ko, H.J.;Kim, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.237-238
    • /
    • 2008
  • Electrical properties of Pd/Zn/Pd/Au contacts to p-InP were investigated as function of the V/III ratio of p-InP. P-type InP was made by the Zn diffusion into InP and activation process with rapid thermal annealing (RTA) measurement. After activation, the hole concentration was two orders of magnitude higher than that of the sample having only diffusion process. According to transmission line method (TLM) results, the specific contact resistance of p-InP was lower as used InP having the lower V/III ratio. The experimental results represent that the diffusion of Zn in undoped InP deeply related to the equilibrium between interstitials and substitutional Zn is established via indium interstitials.

  • PDF