DOI QR코드

DOI QR Code

Fabrication of Zn-treated ACF/TiO2 Composites and Their Photocataytic Activity for Degradation of Methylene Blue

  • Go, Yu-Gyoung (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Anhui Key Laboratory of Advanced Building Materials, Anhui University of Architecture) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2009.03.27

Abstract

In this paper, non-treated ACF (Activated Carbon Fiber) /$TiO_2$ and Zn-treated ACF/$TiO_2$ were prepared. The prepared composites were characterized in terms of their structural crystallinity, elemental identification and photocatalytic activity. XRD patterns of the composites showed that the non-treated ACF/$TiO_2$ composite contained only typical single and clear anatase forms while the Zn-treated ACF/$TiO_2$ contained a mixed anatase and rutile phase with a unique ZnO peak. SEM results show that the titanium complex particles are uniformly distributed on and around the fiber and that the titanium complex particles are more regularly distributed on and around the ACF surfaces upon an increase of the $ZnCl_2$ concentration. These EDX spectra show the presence of peaks from the C, O and Ti elements. Moreover, peaks of the Zn element were observed in the Zn-treated ACF/$TiO_2$ composites. The prominent photocatalytic activity of the Zn-treated ACF/$TiO_2$ can be attributed to the three different effects of photo-degradation: doping, absorptivity by an electron transfer, and adsorptivity of porous ACFs between the Zn-$TiO_2$ and Zn-ACF.

Keywords

References

  1. I. Konstantinou and T. Albanis, Appl. Catal. B. Environ., 42, 319 (2003) https://doi.org/10.1016/S0926-3373(02)00266-7
  2. N. M. Dimitrijevic, Z. V. Saponjic, B. M. Rabatic and T. Rajh, J. Am. Chem. Soc., 127, 1344 (2005) https://doi.org/10.1021/ja0458118
  3. B. M. Rabatic, N. M. Dimitrijevic and R.E. Cook, Adv. Mater., 18, 1033 (2006) https://doi.org/10.1002/adma.200500988
  4. X. Peng, L. Manna, W. Yang and A. P. Alivisatos, Nature., 404, 59 (2000) https://doi.org/10.1038/35003535
  5. H. M. Yates, M. G. Nolan, D. W. Sheel and M.E. Pemble, J. Photochem. Photobiol. A: Chem., 179, 213 (2006) https://doi.org/10.1016/j.jphotochem.2005.08.018
  6. Y. Bessekhouad, D. Robert, J.-V. Weber and N. Chaoui, J. Photochem. Photobiol. A: Chem., 167, 49 (2004) https://doi.org/10.1016/j.jphotochem.2003.12.001
  7. D. W. Kim, S. W.Lee, H. S. Jung, J. Y.Kim, H. Shin and K. S. Hong, Int. J. Hydrogen Energy., 32, 3137 (2007) https://doi.org/10.1016/j.ijhydene.2005.12.023
  8. C. S. Zalazar, C. A. Martin and A.E. Cassano, Chem. Eng. Sci., 60, 4311(2005) https://doi.org/10.1016/j.ces.2004.10.050
  9. G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano and V. Rives, J. Phys. Chem. B., 105, 1033(2001) https://doi.org/10.1021/jp003173j
  10. C. C.Hsu and N. L. Wu, J. Photochem. Photobiol. A: Chem., 172, 269(2005) https://doi.org/10.1016/j.jphotochem.2004.12.014
  11. S. Li, Z. Ma, J. Zhang, Y. Wu and Y. Gong, Catal.Today., 8, 12(2008)
  12. E. Evgenidou, I. Konstantinou, K. Fytianos, I. Poulios, T. Albanis, Catal. Today., 124, 156 (2007) https://doi.org/10.1016/j.cattod.2007.03.033
  13. M. M. Uddin, M. A. Hasnat, A. J. F. Samed and R. K. Majumdar, Dye. Pigm., 75, 207 (2007) https://doi.org/10.1016/j.dyepig.2006.04.023
  14. D. L. Liao, C. A. Badour and B. Q. Liao, J. Photochem. Photobiol. A: Chem., 194, 11 (2008) https://doi.org/10.1016/j.jphotochem.2007.07.008
  15. M. L. Chen, C. S Lim and W. C. Oh, Carbon letters., 8(3), 177(2007) https://doi.org/10.5714/CL.2007.8.3.177
  16. W. C. Oh and M. L. Chen, J. Ceram. Process. Res., 9(2), 100(2008)
  17. M.L.Chen, J. S. Bae and W. C. Oh, Carbon Sci., 7, 259(2006)
  18. M. L.Chen, J. S. Bae and W. C.Oh, Bull. Korean Chem. Soc., 27, 1423(2006) https://doi.org/10.5012/bkcs.2006.27.9.1423
  19. M. L.Chen, J. S. Bae and W. C. Oh, Anal. Sci. Technol., 19, 376(2006)
  20. M. L. Chen, Y. S. Ko and W. C. Oh, Carbon Sci., 8(1), 6(2007)
  21. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura and M. Toyoda, Carbon., 41, 2619(2003) https://doi.org/10.1016/S0008-6223(03)00340-3
  22. S. Karvinen, Solid State Sci., 5, 811 (2003) https://doi.org/10.1016/S1293-2558(03)00082-7
  23. K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori and K. Mackenzie, J. Am. Ceram. Soc., 84(7), 1591(2001) https://doi.org/10.1111/j.1151-2916.2001.tb00882.x
  24. S. D.Sharma, K.K. Saini, C. Kant, C.P. Sharma and S.C. Jain, Appl. Catal. B: Environ., 4, 17(2008)
  25. Y. M. Kim, J. H. Lee, H. R. Jeong, Y. J. Lee, M. H. Um, K. M. Jeong, M. K. Yeo and M. S. Kang. J. Indust. Eng. Chem., 14, 396 (2008) https://doi.org/10.1016/j.jiec.2007.12.005
  26. D. K. Zhang, Y. C. Liu, Y. L. Liu and H.Yang, Physi. B, 351,178(2004) https://doi.org/10.1016/j.physb.2004.06.003
  27. S. F. Chen, W. Zhao, W. Liu and S. J. Zhang, Appl. Surf. Sci., 7, 115(2008)
  28. P. F. Fu, Y. Luan and X.G. Dai, J. Mol. Catal. A: Chem., 221, 81 (2004) https://doi.org/10.1016/j.molcata.2004.06.018