• Title/Summary/Keyword: C doping

Search Result 902, Processing Time 0.033 seconds

Effects of Boron Doping on Properties of CdS Films and Characteristics of CdS/CdTe Solar Cells (보론 도핑에 따른 CdS 박막 및 CdS/CdTe 태양전지 특성)

  • Lee, Jae-Hyeong;Lee, Ho-Yeol;Park, Yong-Gwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.563-569
    • /
    • 1999
  • Boron doped CdS films were prepared by chemical bath deposition using boric acid$(H_3BO_3)$ as donor dopant source, and their electrical, optical properties were investigated as a function of doping concentration. In addition, effects of boron doping of CdS films on characteristics of CdS/CdTe solar cells were investigated. Boron doping highly decreased the resistivity and slightly increased optical band gap of CdS films. The lowest value of resistivity was $2 \Omega-cm \;at\; H_3BO_3/Cd(Ac)_2$ molar ratio of 0.1. For the molar ratio more than 0.1, however, the resistivity increased because of decreasing carrier concentration and mobility and showed similar value for undoped films. The photovoltaic characteristics of CdS/CdTe solar cells with boron doped CdS film improved due to the decrease of the conduction band-Fermi level energy gap of CdS films and the series resistance of solar cell.

  • PDF

Ag Doping Effect on Li[Ni0.2Li0.2Mn0.6]O2 Cathode Material (Li[Ni0.2Li0.2Mn0.6]O2 양극물질의 Ag 도핑(Doping) 효과)

  • Ryu, Jea-Hyeok;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.249-254
    • /
    • 2008
  • Ag doping effect on $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode material was studied. Specially, we focused on rate performance of Ag doped samples. The $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ powder was prepared by simple combustion method and the Ag was doped using $AgNO_3$ during gelation process. Based on X-ray diffraction analysis, there was no structural change by Ag doping, but the 'metallic' form of Ag was included in the doped powder. Both bare and Ag 1 wt.% doped sample showed similar discharge capacity of 242 mAh/g at 0.2C rate. However, as the increase of charge-discharge rate to 3C, Ag 1 wt.% doped sample showed higher discharge capacity (172 mAh/g) and better cyclic performance than those of bare sample. The discharge capacity of Ag 5 wt.% doped sample was relatively low at all rate condition. However it displayed better rate performance than other samples.

Behavior of Plasma-doped Graphene upon High Temperature Vacuum Annealing

  • Lee, Byeong-Joo;Jo, Sung-Il;Jeong, Goo-Hwan
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.100-104
    • /
    • 2018
  • Herein, we present the behavior of plasma-doped graphene upon high-temperature vacuum annealing. An ammonia plasma-treated graphene sample underwent vacuum annealing for 1 h at temperatures ranging from 100 to $500^{\circ}C$. According to Raman analysis, the structural healing of the plasma-treated sample is more pronounced at elevated annealing temperatures. The crystallite size of the plasma-treated sample increases from 13.87 to 29.15 nm after vacuum annealing. In addition, the doping level by plasma treatment reaches $2.2{\times}10^{12}cm^{-2}$ and maintains a value of $1.6{\times}10^{12}cm^{-2}$, even after annealing at $500^{\circ}C$, indicating high doping stability. A relatively large decrease in the pyrrolic bonding components is observed by X-ray photoelectron spectroscopy as compared to other configurations, such as pyridinic and amino bindings, after the annealing. This study indicates that high-vacuum annealing at elevated temperatures provides a method for the structural reorganization of plasma-treated graphene without a subsequent decrease in doping level.

Fabrication and Characteristics of Li-doped ZnO Thin Films for SAW Filter Applications

  • Ha, Jae-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.110-115
    • /
    • 1997
  • Li-doped ZnO films were prepared on Corning 1737 glass substrate by an rf magnetron sputtering technique using ZnO targets with various $Li_2CO_3$ contents ranging from 0 to 10 mol%. The effects of Li doping on the crystallinity and electrical properties of ZnO films were studied for their SAW filter applications. The film resistivity largely increased without suppressing the c-axis orientation and crystallinity with a small addition of Li. Heat treatment of the film at 40$0^{\circ}C$ induced that the film resistivity, c-axis orientation and crystallinity slightly increased. However, heat treatment of the film at 50$0^{\circ}C$ resulted in much lower resistivity than that of as-deposited film due to the increase of electron concentration caused by the evaporationof Li atoms from the ZnO film. Large addition of Li into the ZnO film rather diminished the film resistivity and suppressed the c-axis growth. It was concluded that a small doping of Li into the ZnO film and heat treatment at 40$0^{\circ}C$ caused the film resistivity to be high enough for SAW filter applications without suppression of the c-axis orientation and crystallinity.

  • PDF

All Carrier Ohmic-Contacts을 이용한 유기 발광 다이오드의 성능 향상 연구

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.168-168
    • /
    • 2012
  • 본 연구에서는 Molybdenum oxide (MoOx)-doped 4,4',4"-tris[2-naphthyl(amino)] triphenylamine(2-TNATA)의 P-doping에 의한 hole ohmic contact과 fullerene (C60)/lithium (LiF)의 electron ohmic contact에 의한 All Ohmic contact를 이용한 유기 발광 다이오드 (OLEDs)의 광저항 특성의 향상을 설명한다. 이 소자의 성능은 MoOx-doped 2-TNATA의 두께와 도핑농도에 큰 영향을 받는다. glass/ITO/MoOx-doped 2-TNATA (100 nm)/Al 구조의 소자에서 MoOx-doped 2-TNATA 도핑 농도가 25%에서 75%로 증가할수록 hole only device의 hole ohmic 특성이 향상됐다. 그 이유는 p-type doping effect 때문이다. 또한 photoemission spectra 분석결과, p-type doping effect는 hole-injecting barrier 높이는 낮추고, hole conductivity는 향상되었다. 이것은 2-TNATA에 도핑된 MoOx의 전하전송 콤플렉스의 형성으로 hole carrier의 수가 증가하여 발생되었다. MoOx-doped 2-TNATA의 hole ohmic contact과 fullerene (C60)/lithium fluoride (LiF)의 electron ohmic contact 으로 구성된 glass/ITO/MoOx-doped 2-TNATA (75%, 60 nm)/NPB (10 nm)/Alq3 (35 nm)/C60 (5 nm)/LiF (1 nm)/Al (150 nm)의 소자구조는 6,4V에서 127,600 cd/m2 최대 휘도와 약 1,000 cd/m2에서 4.7 lm/W의 높은 전력 효율을 보여준다.

  • PDF

Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process (도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선)

  • Choi, Sung-Jin;Yoo, Jin-Su;Yoo, Kwon-Jong;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Low temperature activation of dopants by metal induced crystallization (금속 유도 결정화에 의한 저온 불순물 활성화)

  • 인태형;신진욱;이병일;주승기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.45-51
    • /
    • 1997
  • Low temperature activation of dopants which were doped using ion mass doping system in amorphous silicon(a-Si) thin films was investigated. With a 20.angs.-thick Ni film on top of the a-Si thin film, the activation temperature of dopants lowered to 500.deg. C. When the doping was performaed after the deposition of Ni thin film on the a-Si thin films (post-doping), the activation time was shorter than that of dopants mass, the activation time of the dopants doped by pre-doping method increased. It turned NiSi2 formation, while the decrease of activation time was mainly due to the enhancement of the NiSi2 formation by mixing of Ni and a-Si at the interface of Ni and a -Si thin during the ion doping process.

  • PDF

A simulation study on the figure of merit optimization of a 1200V 4H-SiC DMOSFET (1200V급 4H-SiC DMOSFET 성능지수 최적화 설계 시뮬레이션)

  • Choi, Chang-Yong;Kang, Min-Suk;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.63-63
    • /
    • 2009
  • In this work, we demonstrate 800V 4H-SiC power DMOSFETs with several structural alterations to observe static DC characteristics, such as a threshold voltage ($V_{TH}$) and a figure of merit ($V_B^2/R_{SP,ON}$). To optimize the static DC characteristics, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. Design parameters are optimized using 2D numerical simulations and the 4H-SiC DMOSFET structure results in high figure of merit ($V_B^2/R_{SP,ON}$>~$340MW/cm^2$) for a power MOSFET in $V_B{\sim}1200V$ range.

  • PDF

A Simulation Study on the Structural Optimization of a 800 V 4H-SiC Power DMOSFET (800 V급 4H-SiC DMOSFET 전력 소자 구조 최적화 시뮬레이션)

  • Choi, Chang-Yong;Kang, Min-Seok;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.637-640
    • /
    • 2009
  • In this work, we demonstrate 800 V 4H-SiC power DMOSFETs with several structural alterations to obtain a low threshold voltage ($V_{TH}$) and a high figure of merit ($V_B\;^2/R_{SP,ON}$), To optimize the device performance, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. These parameters are optimized using 2D numerical simulation and the 4H-SiC DMOSFET structure results in a threshold voltage ($V_{TH}$) below $^{\sim}$3.8 V, and high figure of merit ($V_B\;^2/R_{SP,ON}$>$^{\sim}$200 $MW/cm^2$) for a power MOSFET in $V_B\;^{\sim}$800 V range.

Significant enhancement of critical current density by effective carbon-doping in MgB2 thin films

  • Ranot, Mahipal;Lee, O.Y.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.12-15
    • /
    • 2013
  • The pure and carbon (C)-doped $MgB_2$ thin films were fabricated on $Al_2O_3$ (0001) substrates at a temperature of $650^{\circ}C$ by using hot-filament-assisted hybrid physical-chemical vapor deposition technique. The $T_c$ value for pure $MgB_2$ film is 38.5 K, while it is between 30 and 35 K for carbon-doped $MgB_2$ films. Expansion in c-axis lattice parameter was observed with increase in carbon doping concentration which is in contrast to carbon-doped $MgB_2$ single crystals. Significant enhancement in the critical current density was obtained for C-doped $MgB_2$ films as compared to the undoped $MgB_2$ film. This enhancement is most probably due to the incorporation of C into $MgB_2$ and the high density of grain boundaries, both help in the pinning of vortices and result in improved superconducting performance.