DOI QR코드

DOI QR Code

Behavior of Plasma-doped Graphene upon High Temperature Vacuum Annealing

  • Lee, Byeong-Joo (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Jo, Sung-Il (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Jeong, Goo-Hwan (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • Received : 2018.07.30
  • Accepted : 2018.09.29
  • Published : 2018.09.30

Abstract

Herein, we present the behavior of plasma-doped graphene upon high-temperature vacuum annealing. An ammonia plasma-treated graphene sample underwent vacuum annealing for 1 h at temperatures ranging from 100 to $500^{\circ}C$. According to Raman analysis, the structural healing of the plasma-treated sample is more pronounced at elevated annealing temperatures. The crystallite size of the plasma-treated sample increases from 13.87 to 29.15 nm after vacuum annealing. In addition, the doping level by plasma treatment reaches $2.2{\times}10^{12}cm^{-2}$ and maintains a value of $1.6{\times}10^{12}cm^{-2}$, even after annealing at $500^{\circ}C$, indicating high doping stability. A relatively large decrease in the pyrrolic bonding components is observed by X-ray photoelectron spectroscopy as compared to other configurations, such as pyridinic and amino bindings, after the annealing. This study indicates that high-vacuum annealing at elevated temperatures provides a method for the structural reorganization of plasma-treated graphene without a subsequent decrease in doping level.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M.I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233
  2. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008). https://doi.org/10.1038/nnano.2008.58
  3. E. Silva, A. R. B. Mendez, Z. M. Barnett, X. Jia, M. S. Dresselhaus, H. Terrones, M. Terrones, B. G. Sumpter, and V. Meunier, Phys. Rev. Lett 105, 045501 (2010). https://doi.org/10.1103/PhysRevLett.105.045501
  4. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008). https://doi.org/10.1126/science.1150878
  5. X. Yang, S. Tang, G. Ding, X. Xie, M. Jiang, and F. Huang, Nanotechnol. 23, 025704 (2012). https://doi.org/10.1088/0957-4484/23/2/025704
  6. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458 (2009) 877-880. https://doi.org/10.1038/nature07919
  7. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, J. Am. Chem. Soc. 131 15939 (2009). https://doi.org/10.1021/ja907098f
  8. Y. C. Lin, C. Y. Lin, and P. W. Chiu, Appl. Phys. Lett. 96, 133110 (2010). https://doi.org/10.1063/1.3368697
  9. L. Xie, L. Jiao, and H. Dai, J. Am. Chem. Soc. 132, 14751 (2010). https://doi.org/10.1021/ja107071g
  10. B. J Lee, D. H. Shin, S. Lee, and G. H. Jeong, Carbon 123, 174 (2017). https://doi.org/10.1016/j.carbon.2017.07.059
  11. S. I. Jo and G. H. Jeong, Appl. Sci. Converg. Technol. 24, 262 (2015). https://doi.org/10.5757/ASCT.2015.24.6.262
  12. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  13. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 273 (2008). https://doi.org/10.1007/s12274-008-8036-1
  14. A.C. Ferrari and J. Robertson, Phys. Rev. B 61, 14059 (2000). https://doi.org/10.1103/PhysRevB.61.14059
  15. A.C. Ferrari, Solid State Commun. 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052
  16. O. A. Maslova, M. R. Ammar, G. Guimbretiere, J. N. Rouzaud, and P. Simon, Phy. Rev. B 85, 134205 (2012).
  17. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007). https://doi.org/10.1103/PhysRevLett.98.166802
  18. C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, and K. Ensslin, Appl. Phys. Lett. 91, 241907 (2007). https://doi.org/10.1063/1.2816262
  19. Y. P. Lin, Y. Ksari, D. Aubel, S. H. Garreau, G. Borvon, Y. Spiegel, L. Roux, L. Simon, and J. M. Thermlin, Carbon 100, 337 (2016). https://doi.org/10.1016/j.carbon.2015.12.094
  20. B. J. Lee and G. H. Joeng, Appl. Phys. A 116, 15 (2014).
  21. T. Schiros, D. Nordlund, L. Palova, D. Prezzi, L. Zhao, K. S. Kim, U. Wrstbauer, C. Gutierrez, D. Delongchamp, C. Jaye, D. Fisher, H. Ogasawara, L. G. M. Pettersson, D. R. Reichman, P. Kim, M. S. Hybertsen, and A. N. Pasupathy, Nano Lett. 12, 4025 (2012). https://doi.org/10.1021/nl301409h