• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.026 seconds

Variations and Series Expansions of the Symbolic Multiple-Valued Logic functions (기호 다치 논리함수와 그 변화 및 전개)

  • 이성우;정환묵
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.1-7
    • /
    • 1983
  • Generally, multiple-valued logic algebra is based on the number system of modulo-M. In this paper, characters a, b, c‥… each of them represents the independent state, are regarded as the elements of the symbolic multiple-valued logic. By using the set theory, the symbolic multiple - valued logic and their functions are defined. And Varation for the symbolic logic function due to the variation of a variable and their properties are suggested and analized. With these variations, the MacLaurin's and Taylor's Series expansions of the symbolic logic functions are proposed and proved.

  • PDF

STABILITY OF HAHN DIFFERENCE EQUATIONS IN BANACH ALGEBRAS

  • Abdelkhaliq, Marwa M.;Hamza, Alaa E.
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1158
    • /
    • 2018
  • Hahn difference operator $D_{q,{\omega}}$ which is defined by $$D_{q,{\omega}}g(t)=\{{\frac{g(gt+{\omega})-g(t)}{t(g-1)+{\omega}}},{\hfill{20}}\text{if }t{\neq}{\theta}:={\frac{\omega}{1-q}},\\g^{\prime}({\theta}),{\hfill{83}}\text{if }t={\theta}$$ received a lot of interest from many researchers due to its applications in constructing families of orthogonal polynomials and in some approximation problems. In this paper, we investigate sufficient conditions for stability of the abstract linear Hahn difference equations of the form $$D_{q,{\omega}}x(t)=A(t)x(t)+f(t),\;t{\in}I$$, and $$D^2{q,{\omega}}x(t)+A(t)D_{q,{\omega}}x(t)+R(t)x(t)=f(t),\;t{\in}I$$, where $A,R:I{\rightarrow}{\mathbb{X}}$, and $f:I{\rightarrow}{\mathbb{X}}$. Here ${\mathbb{X}}$ is a Banach algebra with a unit element e and I is an interval of ${\mathbb{R}}$ containing ${\theta}$.

WEIGHTED COMPOSITION OPERATORS ON NACHBIN SPACES WITH OPERATOR-VALUED WEIGHTS

  • Klilou, Mohammed;Oubbi, Lahbib
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1125-1140
    • /
    • 2018
  • Let A be a normed space, ${\mathcal{B}}(A)$ the algebra of all bounded operators on A, and V a family of strongly upper semicontinuous functions from a Hausdorff completely regular space X into ${\mathcal{B}}(A)$. In this paper, we investigate some properties of the weighted spaces CV (X, A) of all A-valued continuous functions f on X such that the mapping $x{\mapsto}v(x)(f(x))$ is bounded on X, for every $v{\in}V$, endowed with the topology generated by the seminorms ${\parallel}f{\parallel}v={\sup}\{{\parallel}v(x)(f(x)){\parallel},\;x{\in}X\}$. Our main purpose is to characterize continuous, bounded, and locally equicontinuous weighted composition operators between such spaces.

Study on the Parameter Decision of Spring-viscous Dampers for Torsional Vibration Reduction of Diesel Engine Shafting System (디젤엔진축계 진동저감을 위한 스프링-점성 댐퍼의 매개변수 결정 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.;Shin, Y.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1168-1175
    • /
    • 2010
  • Excessive torsional vibrations from marine engine shafting systems can be reduced by using torsional vibration dampers. But in order to be tuned effectively, the dampers should be designed through the optimum design procedure. In this paper, the procedure to get the optimum values of system parameters of spring-viscous dampers using effective modal mass of inertia and stiffness is suggested and the damping is determined by the exact algebra optimization method. The validity of the suggested method is confirmed through the application to a 1800 kW four cycle diesel engine and generator system.

Ulam Stability Generalizations of 4th- Order Ternary Derivations Associated to a Jmrassias Quartic Functional Equation on Fréchet Algebras

  • Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.233-245
    • /
    • 2013
  • Let $\mathcal{A}$ be a Banach ternary algebra over a scalar field R or C and $\mathcal{X}$ be a ternary Banach $\mathcal{A}$-module. A quartic mapping $D\;:\;(\mathcal{A},[\;]_{\mathcal{A}}){\rightarrow}(\mathcal{X},[\;]_{\mathcal{X}})$ is called a $4^{th}$- order ternary derivation if $D([x,y,z])=[D(x),y^4,z^4]+[x^4,D(y),z^4]+[x^4,y^4,D(z)]$ for all $x,y,z{\in}\mathcal{A}$. In this paper, we prove Ulam stability generalizations of $4^{th}$- order ternary derivations associated to the following JMRassias quartic functional equation on fr$\acute{e}$che algebras: $$f(kx+y)+f(kx-y)=k^2[f(x+y)+f(x-y)]+2k^2(k^2-1)f(x)-2(k^2-1)f(y)$$.

MODULE AMENABILITY AND MODULE ARENS REGULARITY OF WEIGHTED SEMIGROUP ALGEBRAS

  • Asgari, Gholamreza;Bodaghi, Abasalt;Bagha, Davood Ebrahimi
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.743-755
    • /
    • 2019
  • For every inverse semigroup S with subsemigroup E of idempotents, necessary and sufficient conditions are obtained for the weighted semigroup algebra $l^1(S,{\omega})$ and its second dual to be $l^1(E)$-module amenble. Some results for the module Arens regularity of $l^1(S,{\omega})$ (as an $l^1(E)$-module) are found. If S is either of the bicyclic inverse semigroup or the Brandt inverse semigroup, it is shown that $l^1(S,{\omega})$ is module amenable but not amenable for any weight ${\omega}$.

MATRIX OPERATORS ON FUNCTION-VALUED FUNCTION SPACES

  • Ong, Sing-Cheong;Rakbud, Jitti;Wootijirattikal, Titarii
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.375-415
    • /
    • 2019
  • We study spaces of continuous-function-valued functions that have the property that composition with evaluation functionals induce $weak^*$ to norm continuous maps to ${\ell}^p$ space ($p{\in}(1,\;{\infty})$). Versions of $H{\ddot{o}}lder^{\prime}s$ inequality and Riesz representation theorem are proved to hold on these spaces. We prove a version of Dixmier's theorem for spaces of function-valued matrix operators on these spaces, and an analogue of the trace formula for operators on Hilbert spaces. When the function space is taken to be the complex field, the spaces are just the ${\ell}^p$ spaces and the well-known classical theorems follow from our results.

LEONARD PAIRS OF RACAH AND KRAWTCHOUK TYPE IN LB-TD FORM

  • Alnajjar, Hasan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.401-414
    • /
    • 2019
  • Let ${\mathcal{F}}$ denote an algebraically closed field with characteristic not two. Fix an integer $d{\geq}3$, let $Mat_{d+1}({\mathcal{F}})$ denote the ${\mathcal{F}}$-algebra of $(d+1){\times}(d+1)$ matrices with entries in ${\mathcal{F}}$. An ordered pair of matrices A, $A^*$ in $Mat_{d+1}({\mathcal{F}})$ is said to be LB-TD form whenever A is lower bidiagonal with subdiagonal entries all 1 and $A^*$ is irreducible tridiagonal. Let A, $A^*$ be a Leonard pair in $Mat_{d+1}({\mathcal{F}})$ with fundamental parameter ${\beta}=2$, with this assumption there are four families of Leonard pairs, Racah, Hahn, dual Hahn, Krawtchouk type. In this paper we show from these four families only Racah and Krawtchouk have LB-TD form.

RATIONAL HOMOTOPY TYPE OF MAPPING SPACES BETWEEN COMPLEX PROJECTIVE SPACES AND THEIR EVALUATION SUBGROUPS

  • Gatsinzi, Jean-Baptiste
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.259-267
    • /
    • 2022
  • We use L models to compute the rational homotopy type of the mapping space of the component of the natural inclusion in,k : ℂPn ↪ ℂPn+k between complex projective spaces and show that it has the rational homotopy type of a product of odd dimensional spheres and a complex projective space. We also characterize the mapping aut1 ℂPn → map(ℂPn, ℂPn+k; in,k) and the resulting G-sequence.

STABILITY AND SOLUTION OF TWO FUNCTIONAL EQUATIONS IN UNITAL ALGEBRAS

  • Yamin Sayyari;Mehdi Dehghanian;Choonkil Park
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.363-372
    • /
    • 2023
  • In this paper, we consider two functional equations: (1) h(𝓕(x, y, z) + 2x + y + z) + h(xy + z) + yh(x) + yh(z) = h(𝓕(x, y, z) + 2x + y) + h(xy) + yh(x + z) + 2h(z), (2) h(𝓕(x, y, z) - y + z + 2e) + 2h(x + y) + h(xy + z) + yh(x) + yh(z) = h(𝓕(x, y, z) - y + 2e) + 2h(x + y + z) + h(xy) + yh(x + z), without any regularity assumption for all x, y, z in a unital algebra A, where 𝓕 : A3 → A is defined by 𝓕(x, y, z) := h(x + y + z) - h(x + y) - h(z) for all x, y, z ∈ A. Also, we find general solutions of these equations in unital algebras. Finally, we prove the Hyers-Ulam stability of (1) and (2) in unital Banach algebras.