• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.025 seconds

The Image of Derivations on Banach Algebras of Differential Functions

  • Park, Dal-Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.2 no.1
    • /
    • pp.81-90
    • /
    • 1989
  • Let $D:C^n(I){\longrightarrow}M$ be a derivation from the Banach algebra of n times continuously differentiable functions on an interval I into a Banach $C^n(I)$-module M. If D is continuous and D(z) is contained in the k-differential subspace, the image of D is contained in the k-differential subspace. The question of when the image of a derivation is contained in the k-differential subspace is discussed.

  • PDF

An Analysis of the Student's Algebra Word Problem Solving Process (대수 문장제 해결을 위한 학생들의 풀이 과정 분석: 일련의 표시(Chain of signification) 관점의 사례연구)

  • Park, Hyun-Jeong;Lee, Chong-Hee
    • School Mathematics
    • /
    • v.9 no.1
    • /
    • pp.141-160
    • /
    • 2007
  • The purpose of this paper was to evaluate how students apply prior knowledge or experience in solving algebra word problems from the chain of signification-based perspective. Three middle school students were evaluated in this case study. The results showed that the subjects formed similarities in the process of applying knowledge needed for solving a problem. The student A and C used semi-open-end formulas and closed formulas as solutions. They then formed concrete shape for each solution using the chain of signification that was applied for solution by forming procedural similarity. At this time, the chain of signification could be the combination of numbers, words, and pictures (such as diagrams or graphs) or just numbers or words. On the other hand, the student C who recognized closed formulas and her own rule as a solution method could not formulate completely procedural similarity due to many errors arising from number information. Nonetheless, all of the subjects showed something in common in the process of coming up with a algorithm that was semi-open-end formula or closed formula.

  • PDF

A MASCHKE-TYPE THEOREM FOR THE GRADED SMASH COPRODUCT C⋊kG

  • Kim, Eun-Sup;Park, Young-Soo;Yoon, Suk-Bong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.337-342
    • /
    • 1999
  • M. Cohen and S. Montgomery showed that a Maschke-type theorem for the smash product, which unlike the corresponding result for group actions, does not require any assumptions about the characterstic of the algebra. Our purpose in this paper is a Maschke-type theorem for the graded smash coproduct C⋊kG: let V be a right C⋊kG-comodule and W a C⋊kG-subcomoduleof V which is a C-direct summand of V. Then W is a C⋊kG-direct summand of V. Also this result is equivalent to the following : let V be a graded right C-comodule and W a graded subcomodule of V which has a complement as a C-subcomodule of V. Then W has a graded complement.

  • PDF

LIE TRIPLE DERIVATIONS ON FACTOR VON NEUMANN ALGEBRAS

  • Liu, Lei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.581-591
    • /
    • 2015
  • Let $\mathcal{A}$ be a factor von Neumann algebra with dimension greater than 1. We prove that if a linear map ${\delta}:\mathcal{A}{\rightarrow}\mathcal{A}$ satisfies $${\delta}([[a,b],c])=[[{\delta}(a),b],c]+[[a,{\delta}(b),c]+[[a,b],{\delta}(c)]$$ for any $a,b,c{\in}\mathcal{A}$ with ab = 0 (resp. ab = P, where P is a fixed nontrivial projection of $\mathcal{A}$), then there exist an operator $T{\in}\mathcal{A}$ and a linear map $f:\mathcal{A}{\rightarrow}\mathbb{C}I$ vanishing at every second commutator [[a, b], c] with ab = 0 (resp. ab = P) such that ${\delta}(a)=aT-Ta+f(a)$ for any $a{\in}\mathcal{A}$.

Q-MEASURES ON THE DUAL UNIT BALL OF A JB-TRIPLE

  • Edwards, C. Martin;Oliveira, Lina
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.197-224
    • /
    • 2019
  • Let A be a $JB^*$-triple with Banach dual space $A^*$ and bi-dual the $JBW^*$-triple $A^{**}$. Elements x of $A^*$ of norm one may be regarded as normalised 'Q-measures' defined on the complete ortho-lattice ${\tilde{\mathcal{U}}}(A^{**})$ of tripotents in $A^{**}$. A Q-measure x possesses a support e(x) in ${\tilde{\mathcal{U}}}(A^{**})$ and a compact support $e_c(x)$ in the complete atomic lattice ${\tilde{\mathcal{U}}}_c(A)$ of elements of ${\tilde{\mathcal{U}}}(A^{**})$ compact relative to A. Necessary and sufficient conditions for an element v of ${\tilde{\mathcal{U}}}_c(A)$ to be a compact support tripotent $e_c(x)$ are given, one of which is related to the Q-covering numbers of v by families of elements of ${\tilde{\mathcal{U}}}_c(A)$.

ON RIGHT REGULARITY OF COMMUTATORS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Park, Sangwon;Ryu, Sung Ju;Sung, Hyo Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.853-868
    • /
    • 2022
  • We study the structure of right regular commutators, and call a ring R strongly C-regular if ab - ba ∈ (ab - ba)2R for any a, b ∈ R. We first prove that a noncommutative strongly C-regular domain is a division algebra generated by all commutators; and that a ring (possibly without identity) is strongly C-regular if and only if it is Abelian C-regular (from which we infer that strong C-regularity is left-right symmetric). It is proved that for a strongly C-regular ring R, (i) if R/W(R) is commutative, then R is commutative; and (ii) every prime factor ring of R is either a commutative domain or a noncommutative division ring, where W(R) is the Wedderburn radical of R.

C*-ALGEBRAIC SCHUR PRODUCT THEOREM, PÓLYA-SZEGŐ-RUDIN QUESTION AND NOVAK'S CONJECTURE

  • Krishna, Krishnanagara Mahesh
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.789-804
    • /
    • 2022
  • Striking result of Vybíral [51] says that Schur product of positive matrices is bounded below by the size of the matrix and the row sums of Schur product. Vybíral used this result to prove the Novak's conjecture. In this paper, we define Schur product of matrices over arbitrary C*-algebras and derive the results of Schur and Vybíral. As an application, we state C*-algebraic version of Novak's conjecture and solve it for commutative unital C*-algebras. We formulate Pólya-Szegő-Rudin question for the C*-algebraic Schur product of positive matrices.

Fostering Algebraic Reasoning Ability of Elementary School Students: Focused on the Exploration of the Associative Law in Multiplication (초등학교에서의 대수적 추론 능력 신장 방안 탐색 - 곱셈의 결합법칙 탐구에 관한 수업 사례 연구 -)

  • Choi, Ji-Young;Pang, Jeong-Suk
    • School Mathematics
    • /
    • v.13 no.4
    • /
    • pp.581-598
    • /
    • 2011
  • Given the growing agreement that algebra should be taught in the early stage of the curriculum, considerable studies have been conducted with regard to early algebra in the elementary school. However, there has been lack of research on how to organize mathematic lessons to develop of algebraic reasoning ability of the elementary school students. This research attempted to gain specific and practical information on effective algebraic teaching and learning in the elementary school. An exploratory qualitative case study was conducted to the fourth graders. This paper focused on the associative law of the multiplication. This paper showed what kinds of activities a teacher may organize following three steps: (a) focus on the properties of numbers and operations in specific situations, (b) discovery of the properties of numbers and operations with many examples, and (c) generalization of the properties of numbers and operations in arbitrary situations. Given the steps, this paper included an analysis on how the students developed their algebraic reasoning. This study provides implications on the important factors that lead to the development of algebraic reasoning ability for elementary students.

  • PDF

The effect of algebraic thinking-based instruction on problem solving in fraction division (분수의 나눗셈에 대한 대수적 사고 기반 수업이 문제해결에 미치는 영향)

  • Park, Seo Yeon;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • Many students have experienced difficulties due to the discontinuity in instruction between arithmetic and algebra, and in the field of elementary education, algebra is often treated somewhat implicitly. However, algebra must be learned as algebraic thinking in accordance with the developmental stage at the elementary level through the expansion of numerical systems, principles, and thinking. In this study, algebraic thinking-based classes were developed and conducted for 6th graders in elementary school, and the effect on the ability to solve word-problems in fraction division was analyzed. During the 11 instructional sessions, the students generalized the solution by exploring the relationship between the dividend and the divisor, and further explored generalized representations applicable to all cases. The results of the study confirmed that algebraic thinking-based classes have positive effects on their ability to solve fractional division word-problems. In the problem-solving process, algebraic thinking elements such as symbolization, generalization, reasoning, and justification appeared, with students discovering various mathematical ideas and structures, and using them to solve problems Based on the research results, we induced some implications for early algebraic guidance in elementary school mathematics.

BESSEL MULTIPLIERS AND APPROXIMATE DUALS IN HILBERT C -MODULES

  • Azandaryani, Morteza Mirzaee
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1063-1079
    • /
    • 2017
  • Two standard Bessel sequences in a Hilbert $C^*$-module are approximately duals if the distance (with respect to the norm) between the identity operator on the Hilbert $C^*$-module and the operator constructed by the composition of the synthesis and analysis operators of these Bessel sequences is strictly less than one. In this paper, we introduce (a, m)-approximate duality using the distance between the identity operator and the operator defined by multiplying the Bessel multiplier with symbol m by an element a in the center of the $C^*$-algebra. We show that approximate duals are special cases of (a, m)-approximate duals and we generalize some of the important results obtained for approximate duals to (a, m)-approximate duals. Especially we study perturbations of (a, m)-approximate duals and (a, m)-approximate duals of modular Riesz bases.