The recommendation system automatically provides the predicted items which are expected to be purchased by analyzing the previous customer behaviors. This recommendation system has been applied to many e-commerce businesses, and it is generating positive effects on user convenience as well as the company's revenue. However, there are several limitations of the existing recommendation systems. They do not reflect specific criteria for evaluating products or the factors that affect customer buying decisions. Thus, our research proposes a collaborative recommendation model algorithm that utilizes each customer's online product reviews. This study deploys topic modeling method for customer opinion mining. Also, it adopts a kernel-based machine learning concept by selecting kernels explaining individual similarities in accordance with customers' purchase history and online reviews. Our study further applies a multiple kernel learning algorithm to integrate the kernelsinto a combined model for predicting the product ratings, and it verifies its validity with a data set (including purchased item, product rating, and online review) of BestBuy, an online consumer electronics store. This study theoretically implicates by suggesting a new method for the online recommendation system, i.e., a collaborative recommendation method using topic modeling and kernel-based learning.
A two-year survey of consumers'awareness and perception of genetically-modified (GM) foods was conducted during May through September of 2000 and 2001 with a random sample of Korean consumers. More than 68% of the respondents were exposed to some information related to GM foods. The greatest benefit of the development of GM foods was thought to be the remedy for the food shortage in the future. More than 90% of Korean consumers wanted GM foods to be labeled. About 18% of the respondents would buy GM foods voluntarily, whereas over 49% would not until they found out more. Only 40% of Korean consumers were found to realize that food items originated ken plants contain genes. More consumers responded that they would not buy herbicide-tolerant GM soybean but buy vitamin-enriched GM soybean. It seemed to be that many Korean consumers do not make decisions of acceptance or rejection of GM foods not on the basis of biotechnology but on the basis of the word(5) used to describe the products, such as herbicide and vitamin. Only 4% of Korean consumers responded that GM foods were the greatest safety-threatening factor of Korean foods.
Although ready meals have recently increased their market share in the Korean food industry, a literature review found that the use of ready meals triggers feelings of guilt in homemakers. Such guilt arises as a result of several factors apparently related to consumers' health. Consequently, levels of guilt might be expected to vary depending on consumers' perceived health locus. The present study aims to examine (a) how health locus affects guilty feelings about ready-meal consumption, (b) how the effect varies in relation to the consumption of different types of ready meal, and (c) the relationship between consumers' guilty feelings and willingness to buy ready meals. Three dimensions of health locus of control (HLC) -internal HLC (IHLC), powerful-others HLC (PHLC), and chance HLC (CHLC)- were presumed to influence consumers' feelings of guilt in association with ready meals. Data were collected via an online survey, and participants were randomly assigned to either of two groups: one group was instructed to heat meals in a microwave (ready-to-heat [RTH] group, n=104) and the other cooked using a pan with additional ingredients (ready-to-cook [RTC] group, n=101). The study found that guilty feelings about consuming RTH meals increased in line with increased external HLCs, namely, PHLC and CHLC. For the RTC group, guilt increased in line with increased PHLC. IHLC had no significant effect on guilty feelings in either group. Willingness to buy ready meals decreased for both groups as consumers' feelings of guilt increased. Even RTC meals, which require more time and energy in food preparation, did not reduce guilty feelings among consumers with higher PHLC. RTC meals are preferable for consumers with higher CHLC, since their sense of greater involvement in the cooking process alleviates their feelings of guilt. Cooking with already prepared and uncooked ingredients brought fun and joy, both for the participants and their significant others. This interpretation may be developed into a strategic plan by ready-meal producers to strengthen their marketing strategy.
As COVID-19 has led to a surge in e-commerce Buy Now Pay Later(BNPL) has become preferred choice among millennials. In Korea Coupang followed by Naver Pay offers a deferred payment, aiming to create customer lock-in effect, save credit card processing fee and lay the groundwork for entering into new financial services. However the literature related to the influential factors of customers' usage intention toward a deferred payment is scarce. For the study, a multi-group analysis was carried out to find differences between Naver shopping and Coupang. The results revealed that the important factors that affect a deferred payment adoption were compatibility, impulsive buying tendency in Naver shopping, whereas compatibility, relative advantage, additional value in Coupang(listed in order of most important). In addition, impulsive buying tendency had a positive effect on adoption intention in Naver shopping and on perceived risk in Coupang. The results imply that Naver shopping need to focus on managing delinquency while Coupang should provide sufficient information on how late fees and credit rating downgrade work and try not to make a deferred payment option stand out. In order to increase adoption rate it is recommendable to narrow down target segment of a deferred payment and expand it to a specialized vertical such as travel.
A capacity expansion planning problem with buy-or-lease decisions is considered. Demands for capacity are deterministic and are given period-dependently at each period. Capacity additions occur by buying or leasing a capacity, and leased capacity at any period is reconverted to original source after a fixed length of periods, say, lease period. All cost functions (buying, leasing and idle costs) are assumed to be concave. And shortages of capacity and disposals are not considered. The properties of an optimal solution are characterized. This is then used in a tree search algorithm for the optimal solution and other two algorithms for a near-optimal solution are added. And these algorithms are illustrated with numerical examples.
Proceedings of the Korean Operations and Management Science Society Conference
/
2000.10a
/
pp.29-32
/
2000
We proposed a neural network based “left shoulder”detector. The auto-associative neural network was trained with the “left shoulder”patterns obtained from the Korea Composite Stock Price Index, and then tested out-of-sample with a reasonably good result. A hypothetical investment strategy based on the detector achieved a return of 132% in comparison with 39% return from a buy and hold strategy
Proceedings of the Korean Operations and Management Science Society Conference
/
2005.05a
/
pp.324-331
/
2005
In this paper, we propose a new customer profile model based on customer behavior in Internet shopping mall. The proposed technique defines customer profile model based on customer behavior information such as click data, buy data, and interest categories. We also implement CBCPM(Customer Behavior-based Customer Profile Model) and perform extensive experiments. The experimental results show that CBCPM has higher precision, recall, and F1 than the existing customer profile model.
Proceedings of the Korean Society of Precision Engineering Conference
/
1993.04b
/
pp.370-374
/
1993
This paper describes a study on the expert system based process planning of the block division process in shipbuilding. The prototype system developed deterines the block division line of the midship of crude-oil tanker. Case-based reasoning (CBR) approach relying on previous similar cases to solve the problem is applied instead of rule-based reasoning (RBR). Similar cases are retrieved from case base according to the similarity metrics between input problem and cases. The retrieved case with the highest priority is then adapted to fit to the input problem buy adaptation rules. The adapted solution is proposed as the division line for the input problem.
In order to ensure the right of self-determination of women, most of countries allow women to buy post-coital contraceptive pills or general medical supplies with ease. This study aims to analyze how ordinary people recognize and respond to post-coital contraceptive pills through collecting atypical data by using the keyword 'Contraception', rather than using the existing actual condition survey, such as questionnaire and interview, so that the results have been presented, which may be referred to for establishment of policies.
This paper compares long-run returns of privatization initial public offerings to those of domestic stock markets of respective countries using a sample of 196 privatization initial public offerings from 39 countries. The evidence indicates that the privatization initial public offerings (IPOs) significantly outperform their domestic stock markets. There are substantial differences in the long-run performance of privatization IPOs depending on the return estimation techniques, however. Evidence indicates that the inference based either on conventional t or on skewness-adjusted t statistics may yield misspecified test statistics. The quality of estimation tends to be improved by simply eliminating the outliers from the sample, especially for the buy-and-hold abnormal return technique.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.