• Title/Summary/Keyword: Butterfly valves

Search Result 37, Processing Time 0.022 seconds

A study on the condition assessment of large diameter water valves using non-destructive technologies (비파괴 기술을 이용한 대구경 수도용 밸브의 상태평가에 관한 연구)

  • Ho-Min Lee;Hyun-yong Choi;Suwan Park;Tae-min Oh;Chae-Min Kim;Cheol-Ho Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.215-229
    • /
    • 2023
  • In this study, non-destructive technologies that can be applied to evaluate the integrity of valve materials, safety against internal pressure caused by corrosion, and the blocking function of large-diameter water valves during operation without requiring specimen collection or manpower entering the inside of the valve were tested to assess the reliability of the technologies and their suitability for field application. The results showed that the condition of the graphite structure inside the valve body can be evaluated directly through the optical microscope in the field without specimen collection for large-diameter water butterfly valves, and the depth of corrosion inside the valve body can be determined by array ultrasound and the tensile strength can be measured by instrumented indentation test. The reliability of each of these non-destructive techniques is high, and they can be widely used to evaluate the condition of steel or cast iron pipes that are significantly smaller in thickness than valves. Evaluation of blocking function of the valves with mixed gas showed that it can be detected even when a very low flow rate of mixed gas passes through the disk along with the water flow. Finally, as a result of evaluating the field applicability of non-destructive technologies for three old butterfly valves installed in the US industrial water pipeline, it was found that it is possible to check the material and determine the suitability of large-diameter water valves without taking samples, and to determine the corrosion state and mechanical strength. In addition, it was possible to evaluate safety through the measurement results, and it is judged that the evaluation of the blocking function using mixed gas will help strengthen preventive response in the event of an accident.

A Study on the Efficient Flow Analysis due to Valve Shape (밸브 형상에 따른 효율적인 유동해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2020
  • This study investigates the flow efficiency based on valve shape. Three models are designed for the throttle, ball, and butterfly valves. Results show that Flow Model B, representing the ball valve, demonstrates the fastest flow rate among the three models. Although pressure contours are present on the side surfaces of the valve wings for all models, Flow Model C, representing the butterfly valve, demonstrates to be under the least amount of applied pressure among the three models. The results of this study can be utilized to efficiently control the air flow through various types of valves.

Shape Optimization of a Segment Ball Valve Using Metamodels

  • Lee, Jin-Hwan;Lee, Kwon-Hee
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.553-558
    • /
    • 2010
  • This study presents the optimization design process of a segment ball valve that involves the reduction of the flow resistance coefficient and the satisfaction of the strength requirement. Numerical analysis of fluid flow and structural analysis have been performed to predict the flow resistance coefficient and the maximum stress of a segment ball valve. In this study, a segment ball valve incorporating the advantages of a ball valve and a butterfly valve has been devised. In general, ball valves are installed in a pipe system where tight shut off is required. Butterfly valves having smaller end-to-end dimension than ball valve can be installed in narrow spaces in a pipe system. The metamodels for the shape design of a segment ball valve are built by the response surface method and the Kriging interpolation model.

A Study on Flow Coefficient and Flow Characteristics for Butterfly Valve by Numerical Analysis (수치해석에 의한 버터플라이 밸브의 유량계수 및 유동특성에 관한 연구)

  • Kwak, Kyung-Min;Cho, Ji-Sung;Kim, Jin-Dae;Lee, Jung-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-66
    • /
    • 2012
  • The objective of this study is to simulate flow coefficient and flow characteristics such as velocity and pressure distribution for butterfly valve. Butterfly valves used in this study are 65A, 80A and 100A, in size, and of which the opening angle is varied. The flow coefficient, Kv, increases as the disc opening and valve size are increase. When using flow coefficient meanwhile specific curve of flow rate is also determined. The flow velocity between disc and seat increase as the disc opening decrease. The re-circulating zone is also observed in downstream behind disc.

A Study on Structural Analysis of Butterfly Valve Components by Pressure Testing of the Industrial Standard (산업용 표준의 압력시험 방법에 의한 버터플라이 밸브 구성품의 구조해석에 관한 연구)

  • Shin, Myung-Seob;Yoon, Joon-Yong;Park, In-Won;Lee, Seoung-Hwan;Park, Han-Yung;Jung, Seung-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.5-9
    • /
    • 2011
  • Butterfly valves are widely used in current industry to control the fluid flow. They are used for both on-off and throttling applications involving large flows at relatively low pressure-drop especially in large size pipelines. In this study, we carried out the structure analysis of the butterfly valve components according to pressure testing of the industrial standard. the numerical simulation was performed by using ANSYS Workbench. The reliability of valve is evaluated under the investigation of the strain rate, the leak test and the durability of the valve.

A Study on the Orifice Shape of High-Differential Pressure Control Butterfly Valve (고차압 제어 버터플라이 밸브의 오리피스 형상에 관한 연구)

  • Yun, Ik-Sang;Jin, Jeong-In;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.107-114
    • /
    • 2021
  • Butterfly valves are used in various industries to control the flow rate, flow direction, pressure, and temperature. These are gaining popularity in the field of plant industry to enable high-differential pressure because of their low maintenance costs and ease of installation. This study presents a numerical analysis method to analyze changes in the flow characteristics of a high-differential pressure control butterfly valve based on the location and shape of the orifice. The numerical analysis was conducted using a commercial CFD program. The analysis results show a correlation between the orifice shape and cavitation phenomenon.

Deviation Characteristics of Clamp-on Type Ultrasonic Flowmeter Installed in Downstream of Valves (밸브 하류에 설치된 건식 초음파유량계의 편차특성)

  • Lee, Dong-Keun;Cho, Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.12-18
    • /
    • 2012
  • This study was performed to found out the deviations for clamp-on type ultrasonic flowmeter installed in downstream of valves. It was selected three types of two-path flowmeter mainly used for K-water as test. Experiment carried out to confirmed characteristics of deviation depending on the sensor location, straight pipe length and maker for 1-path, 2-path and 4-path combined 2-path flowmeter. It was selected two kinds of valves with 100 % and 50 % opening, butterfly valves and gate valves, for flow disturbance factor. Finally, we suggested number of sensors by maker, straight pipe length and installed location of sensors satisfying the tolerance depending on the experiment results.

A Study on the Flow Analysis of Triple Eccentric Butterfly Valve with Two-way Pressure (양방향 압력에 작동 가능한 3중 편심 버터플라이 밸브의 유동해석에 관한 연구)

  • RYU, M.R.;PARK, H.J.;KIM, J.H.;LEE, D.H.;LEE, S.B.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • The triple eccentric butterfly valve has metal sheet and this study about butterfly valve ceiling is an innovative approach. But it is affected by the static pressure as well as cross-current. The damage at the valve on the pipe resulted from the reflux is due to valve leakage. This study is investigated on the triple eccentric disk and it is applied with angle and the static pressure in all cases to develop cross-current triple eccentric butterfly valves. The disc with the diameter of 300A is valve against flow velocity. The entrance pressure by flow characteristics is performed with numerical analysis. As the result, valve torque production is reduced more than the conventional triple eccentric valve and entrance pressure is decreased on the increase of valve open angle. And flow coefficient can be known to be increased.