• Title/Summary/Keyword: Business management

Search Result 16,902, Processing Time 0.055 seconds

New Insights on Mobile Location-based Services(LBS): Leading Factors to the Use of Services and Privacy Paradox (모바일 위치기반서비스(LBS) 관련한 새로운 견해: 서비스사용으로 이끄는 요인들과 사생활염려의 모순)

  • Cheon, Eunyoung;Park, Yong-Tae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.33-56
    • /
    • 2017
  • As Internet usage is becoming more common worldwide and smartphone become necessity in daily life, technologies and applications related to mobile Internet are developing rapidly. The results of the Internet usage patterns of consumers around the world imply that there are many potential new business opportunities for mobile Internet technologies and applications. The location-based service (LBS) is a service based on the location information of the mobile device. LBS has recently gotten much attention among many mobile applications and various LBSs are rapidly developing in numerous categories. However, even with the development of LBS related technologies and services, there is still a lack of empirical research on the intention to use LBS. The application of previous researches is limited because they focused on the effect of one particular factor and had not shown the direct relationship on the intention to use LBS. Therefore, this study presents a research model of factors that affect the intention to use and actual use of LBS whose market is expected to grow rapidly, and tested it by conducting a questionnaire survey of 330 users. The results of data analysis showed that service customization, service quality, and personal innovativeness have a positive effect on the intention to use LBS and the intention to use LBS has a positive effect on the actual use of LBS. These results implies that LBS providers can enhance the user's intention to use LBS by offering service customization through the provision of various LBSs based on users' needs, improving information service qualities such as accuracy, timeliness, sensitivity, and reliability, and encouraging personal innovativeness. However, privacy concerns in the context of LBS are not significantly affected by service customization and personal innovativeness and privacy concerns do not significantly affect the intention to use LBS. In fact, the information related to users' location collected by LBS is less sensitive when compared with the information that is used to perform financial transactions. Therefore, such outcomes on privacy concern are revealed. In addition, the advantages of using LBS are more important than the sensitivity of privacy protection to the users who use LBS than to the users who use information systems such as electronic commerce that involves financial transactions. Therefore, LBS are recommended to be treated differently from other information systems. This study is significant in the theoretical point of contribution that it proposed factors affecting the intention to use LBS in a multi-faceted perspective, proved the proposed research model empirically, brought new insights on LBS, and broadens understanding of the intention to use and actual use of LBS. Also, the empirical results of the customization of LBS affecting the user's intention to use the LBS suggest that the provision of customized LBS services based on the usage data analysis through utilizing technologies such as artificial intelligence can enhance the user's intention to use. In a practical point of view, the results of this study are expected to help LBS providers to develop a competitive strategy for responding to LBS users effectively and lead to the LBS market grows. We expect that there will be differences in using LBSs depending on some factors such as types of LBS, whether it is free of charge or not, privacy policies related to LBS, the levels of reliability related application and technology, the frequency of use, etc. Therefore, if we can make comparative studies with those factors, it will contribute to the development of the research areas of LBS. We hope this study can inspire many researchers and initiate many great researches in LBS fields.

Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis (클라우드 컴퓨팅 관련 논문의 서지정보 및 인용정보를 활용한 연구 동향 분석: 사회 네트워크 분석의 활용)

  • Kim, Dongsung;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.195-211
    • /
    • 2014
  • Cloud computing services provide IT resources as services on demand. This is considered a key concept, which will lead a shift from an ownership-based paradigm to a new pay-for-use paradigm, which can reduce the fixed cost for IT resources, and improve flexibility and scalability. As IT services, cloud services have evolved from early similar computing concepts such as network computing, utility computing, server-based computing, and grid computing. So research into cloud computing is highly related to and combined with various relevant computing research areas. To seek promising research issues and topics in cloud computing, it is necessary to understand the research trends in cloud computing more comprehensively. In this study, we collect bibliographic information and citation information for cloud computing related research papers published in major international journals from 1994 to 2012, and analyzes macroscopic trends and network changes to citation relationships among papers and the co-occurrence relationships of key words by utilizing social network analysis measures. Through the analysis, we can identify the relationships and connections among research topics in cloud computing related areas, and highlight new potential research topics. In addition, we visualize dynamic changes of research topics relating to cloud computing using a proposed cloud computing "research trend map." A research trend map visualizes positions of research topics in two-dimensional space. Frequencies of key words (X-axis) and the rates of increase in the degree centrality of key words (Y-axis) are used as the two dimensions of the research trend map. Based on the values of the two dimensions, the two dimensional space of a research map is divided into four areas: maturation, growth, promising, and decline. An area with high keyword frequency, but low rates of increase of degree centrality is defined as a mature technology area; the area where both keyword frequency and the increase rate of degree centrality are high is defined as a growth technology area; the area where the keyword frequency is low, but the rate of increase in the degree centrality is high is defined as a promising technology area; and the area where both keyword frequency and the rate of degree centrality are low is defined as a declining technology area. Based on this method, cloud computing research trend maps make it possible to easily grasp the main research trends in cloud computing, and to explain the evolution of research topics. According to the results of an analysis of citation relationships, research papers on security, distributed processing, and optical networking for cloud computing are on the top based on the page-rank measure. From the analysis of key words in research papers, cloud computing and grid computing showed high centrality in 2009, and key words dealing with main elemental technologies such as data outsourcing, error detection methods, and infrastructure construction showed high centrality in 2010~2011. In 2012, security, virtualization, and resource management showed high centrality. Moreover, it was found that the interest in the technical issues of cloud computing increases gradually. From annual cloud computing research trend maps, it was verified that security is located in the promising area, virtualization has moved from the promising area to the growth area, and grid computing and distributed system has moved to the declining area. The study results indicate that distributed systems and grid computing received a lot of attention as similar computing paradigms in the early stage of cloud computing research. The early stage of cloud computing was a period focused on understanding and investigating cloud computing as an emergent technology, linking to relevant established computing concepts. After the early stage, security and virtualization technologies became main issues in cloud computing, which is reflected in the movement of security and virtualization technologies from the promising area to the growth area in the cloud computing research trend maps. Moreover, this study revealed that current research in cloud computing has rapidly transferred from a focus on technical issues to for a focus on application issues, such as SLAs (Service Level Agreements).

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

A Hybrid SVM Classifier for Imbalanced Data Sets (불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델)

  • Lee, Jae Sik;Kwon, Jong Gu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.125-140
    • /
    • 2013
  • We call a data set in which the number of records belonging to a certain class far outnumbers the number of records belonging to the other class, 'imbalanced data set'. Most of the classification techniques perform poorly on imbalanced data sets. When we evaluate the performance of a certain classification technique, we need to measure not only 'accuracy' but also 'sensitivity' and 'specificity'. In a customer churn prediction problem, 'retention' records account for the majority class, and 'churn' records account for the minority class. Sensitivity measures the proportion of actual retentions which are correctly identified as such. Specificity measures the proportion of churns which are correctly identified as such. The poor performance of the classification techniques on imbalanced data sets is due to the low value of specificity. Many previous researches on imbalanced data sets employed 'oversampling' technique where members of the minority class are sampled more than those of the majority class in order to make a relatively balanced data set. When a classification model is constructed using this oversampled balanced data set, specificity can be improved but sensitivity will be decreased. In this research, we developed a hybrid model of support vector machine (SVM), artificial neural network (ANN) and decision tree, that improves specificity while maintaining sensitivity. We named this hybrid model 'hybrid SVM model.' The process of construction and prediction of our hybrid SVM model is as follows. By oversampling from the original imbalanced data set, a balanced data set is prepared. SVM_I model and ANN_I model are constructed using the imbalanced data set, and SVM_B model is constructed using the balanced data set. SVM_I model is superior in sensitivity and SVM_B model is superior in specificity. For a record on which both SVM_I model and SVM_B model make the same prediction, that prediction becomes the final solution. If they make different prediction, the final solution is determined by the discrimination rules obtained by ANN and decision tree. For a record on which SVM_I model and SVM_B model make different predictions, a decision tree model is constructed using ANN_I output value as input and actual retention or churn as target. We obtained the following two discrimination rules: 'IF ANN_I output value <0.285, THEN Final Solution = Retention' and 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn.' The threshold 0.285 is the value optimized for the data used in this research. The result we present in this research is the structure or framework of our hybrid SVM model, not a specific threshold value such as 0.285. Therefore, the threshold value in the above discrimination rules can be changed to any value depending on the data. In order to evaluate the performance of our hybrid SVM model, we used the 'churn data set' in UCI Machine Learning Repository, that consists of 85% retention customers and 15% churn customers. Accuracy of the hybrid SVM model is 91.08% that is better than that of SVM_I model or SVM_B model. The points worth noticing here are its sensitivity, 95.02%, and specificity, 69.24%. The sensitivity of SVM_I model is 94.65%, and the specificity of SVM_B model is 67.00%. Therefore the hybrid SVM model developed in this research improves the specificity of SVM_B model while maintaining the sensitivity of SVM_I model.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

An Empirical Study on Motivation Factors and Reward Structure for User's Createve Contents Generation: Focusing on the Mediating Effect of Commitment (창의적인 UCC 제작에 영향을 미치는 동기 및 보상 체계에 대한 연구: 몰입에 매개 효과를 중심으로)

  • Kim, Jin-Woo;Yang, Seung-Hwa;Lim, Seong-Taek;Lee, In-Seong
    • Asia pacific journal of information systems
    • /
    • v.20 no.1
    • /
    • pp.141-170
    • /
    • 2010
  • User created content (UCC) is created and shared by common users on line. From the user's perspective, the increase of UCCs has led to an expansion of alternative means of communications, while from the business perspective UCCs have formed an environment in which an abundant amount of new contents can be produced. Despite outward quantitative growth, however, many aspects of UCCs do not meet the expectations of general users in terms of quality, and this can be observed through pirated contents and user-copied contents. The purpose of this research is to investigate effective methods for fostering production of creative user-generated content. This study proposes two core elements, namely, reward and motivation, which are believed to enhance content creativity as well as the mediating factor and users' committement, which will be effective for bridging the increasing motivation and content creativity. Based on this perspective, this research takes an in-depth look at issues related to constructing the dimensions of reward and motivation in UCC services for creative content product, which are identified in three phases. First, three dimensions of rewards have been proposed: task dimension, social dimension, and organizational dimention. The task dimension rewards are related to the inherent characteristics of a task such as writing blog articles and pasting photos. Four concrete ways of providing task-related rewards in UCC environments are suggested in this study, which include skill variety, task significance, task identity, and autonomy. The social dimensioni rewards are related to the connected relationships among users. The organizational dimension consists of monetary payoff and recognition from others. Second, the two types of motivations are suggested to be affected by the diverse rewards schemes: intrinsic motivation and extrinsic motivation. Intrinsic motivation occurs when people create new UCC contents for its' own sake, whereas extrinsic motivation occurs when people create new contents for other purposes such as fame and money. Third, commitments are suggested to work as important mediating variables between motivation and content creativity. We believe commitments are especially important in online environments because they have been found to exert stronger impacts on the Internet users than other relevant factors do. Two types of commitments are suggested in this study: emotional commitment and continuity commitment. Finally, content creativity is proposed as the final dependent variable in this study. We provide a systematic method to measure the creativity of UCC content based on the prior studies in creativity measurement. The method includes expert evaluation of blog pages posted by the Internet users. In order to test the theoretical model of our study, 133 active blog users were recruited to participate in a group discussion as well as a survey. They were asked to fill out a questionnaire on their commitment, motivation and rewards of creating UCC contents. At the same time, their creativity was measured by independent experts using Torrance Tests of Creative Thinking. Finally, two independent users visited the study participants' blog pages and evaluated their content creativity using the Creative Products Semantic Scale. All the data were compiled and analyzed through structural equation modeling. We first conducted a confirmatory factor analysis to validate the measurement model of our research. It was found that measures used in our study satisfied the requirement of reliability, convergent validity as well as discriminant validity. Given the fact that our measurement model is valid and reliable, we proceeded to conduct a structural model analysis. The results indicated that all the variables in our model had higher than necessary explanatory powers in terms of R-square values. The study results identified several important reward shemes. First of all, skill variety, task importance, task identity, and automony were all found to have significant influences on the intrinsic motivation of creating UCC contents. Also, the relationship with other users was found to have strong influences upon both intrinsic and extrinsic motivation. Finally, the opportunity to get recognition for their UCC work was found to have a significant impact on the extrinsic motivation of UCC users. However, different from our expectation, monetary compensation was found not to have a significant impact on the extrinsic motivation. It was also found that commitment was an important mediating factor in UCC environment between motivation and content creativity. A more fully mediating model was found to have the highest explanation power compared to no-mediation or partially mediated models. This paper ends with implications of the study results. First, from the theoretical perspective this study proposes and empirically validates the commitment as an important mediating factor between motivation and content creativity. This result reflects the characteristics of online environment in which the UCC creation activities occur voluntarily. Second, from the practical perspective this study proposes several concrete reward factors that are germane to the UCC environment, and their effectiveness to the content creativity is estimated. In addition to the quantitive results of relative importance of the reward factrs, this study also proposes concrete ways to provide the rewards in the UCC environment based on the FGI data that are collected after our participants finish asnwering survey questions. Finally, from the methodological perspective, this study suggests and implements a way to measure the UCC content creativity independently from the content generators' creativity, which can be used later by future research on UCC creativity. In sum, this study proposes and validates important reward features and their relations to the motivation, commitment, and the content creativity in UCC environment, which is believed to be one of the most important factors for the success of UCC and Web 2.0. As such, this study can provide significant theoretical as well as practical bases for fostering creativity in UCC contents.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.

The Effects of Self-regulatory Resources and Construal Levels on the Choices of Zero-cost Products (자아조절자원 및 해석수준이 공짜대안 선택에 미치는 영향)

  • Lee, Jinyong;Im, Seoung Ah
    • Asia Marketing Journal
    • /
    • v.13 no.4
    • /
    • pp.55-76
    • /
    • 2012
  • Most people prefer to choose zero-cost products they may get without paying any money. The 'zero-cost effect' can be explained with a 'zero-cost model' where consumers attach special values to zero-cost products in a different way from general economic models (Shampanier, Mazar and Ariely 2007). If 2 different products at the regular prices of ₩200 and ₩400 simultaneously offer ₩200 discounts, the prices will be changed to ₩0 and ₩200, respectively. In spite of the same price gap of the two products after the ₩200 discounts, people are much more likely to select the free alternative than the same product at the price of ₩200. Although prior studies have focused on the 'zero-cost effect' in isolation of other factors, this study investigates the moderating effects of a self-regulatory resource and a construal level on the selection of free products. Self-regulatory resources induce people to control or regulate their behavior. However, since self-regulatory resources are limited, they are to be easily depleted when exerted (Muraven, Tice, and Baumeister 1998). Without the resources, consumers tend to become less sensitive to price changes and to spend money more extravagantly (Vohs and Faber 2007). Under this condition, they are also likely to invest less effort on their information processing and to make more intuitive decisions (Pocheptsova, Amir, Dhar, and Baumeister 2009). Therefore, context effects such as price changes and zero cost effects are less likely in the circumstances of resource depletion. In addition, construal levels have profound effects on the ways of information processing (Trope and Liberman 2003, 2010). In a high construal level, people tend to attune their minds to core features and desirability aspects, whereas, in a low construal level, they are more likely to process information based on secondary features and feasibility aspects (Khan, Zhu, and Kalra 2010). A perceived value of a product is more related to desirability whereas a zero cost or a price level is more associated with feasibility. Thus, context effects or reliance on feasibility (for instance, the zero cost effect) will be diminished in a high level construal while those effects may remain in a low level construal. When people make decisions, these 2 factors can influence the magnitude of the 'zero-cost effect'. This study ran two experiments to investigate the effects of self-regulatory resources and construal levels on the selection of a free product. Kisses and Ferrero-Rocher, which were adopted in the prior study (Shampanier et al. 2007) were also used as alternatives in Experiments 1 and 2. We designed Experiment 1 in order to test whether self-regulatory resource depletion will moderate the zero-cost effect. The level of self-regulatory resources was manipulated with two different tasks, a Sudoku task in the depletion condition and a task of drawing diagrams in the non-depletion condition. Upon completion of the manipulation task, subjects were randomly assigned to one of a decision set with a zero-cost option (i.e., Kisses ₩0, and Ferrero-Rocher ₩200) or a set without a zero-cost option (i.e., Kisses ₩200, and Ferrero-Rocher ₩400). A pair of alternatives in the two decision sets have the same price gap of ₩200 between a low-priced Kisses and a high-priced Ferrero-Rocher. Subjects in the no-depletion condition selected Kisses more often (71.88%) over Ferrero-Rocher when Kisses was free than when it was priced at ₩200 (34.88%). However, the zero-cost effect disappeared when people do not have self-regulatory resources. Experiment 2 was conducted to investigate whether constual levels influence the magnitude of the 'zero-cost effect'. To manipulate construal levels, 4 different 'why (in the high construal level condition)' or 'how (in the low construal level condition)' questions about health management were asked. They were presented with 4 boxes connected with downward arrows. In a box at the top, there was one question, 'Why do I maintain good physical health?' or 'How do I maintain good physical health?' Subjects inserted a response to the question of why or how they would maintain good physical health. Similar tasks were repeated for the 2nd, 3rd, and 4th responses. After the manipulation task, subjects were randomly assigned either to a decision set with a zero-cost option, or to a set without it, as in Experiment 1. When a low construal level is primed with 'how', subjects chose free Kisses (60.66%) more often over Ferrero-Rocher than they chose ₩200 Kisses (42.19%) over ₩400 FerreroRocher. On contrast, the zero-cost effect could not be observed any longer when a high construal level is primed with 'why'.

  • PDF

Study on the Effects of Shop Choice Properties on Brand Attitudes: Focus on Six Major Coffee Shop Brands (점포선택속성이 브랜드 태도에 미치는 영향에 관한 연구: 6개 메이저 브랜드 커피전문점을 중심으로)

  • Yi, Weon-Ho;Kim, Su-Ok;Lee, Sang-Youn;Youn, Myoung-Kil
    • Journal of Distribution Science
    • /
    • v.10 no.3
    • /
    • pp.51-61
    • /
    • 2012
  • This study seeks to understand how the choice of a coffee shop is related to a customer's loyalty and which characteristics of a shop influence this choice. It considers large-sized coffee shops brands whose market scale has gradually grown. The users' choice of shop is determined by price, employee service, shop location, and shop atmosphere. The study investigated the effects of these four properties on the brand attitudes of coffee shops. The effects were found to vary depending on users' characteristics. The properties with the largest influence were shop atmosphere and shop location Therefore, the purpose of the study was to examine the properties that could help coffee shops get loyal customers, and the choice properties that could satisfy consumers' desires The study examined consumers' perceptions of shop properties at selection of coffee shop and the difference between perceptual difference and coffee brand in order to investigate customers' desires and needs and to suggest ways that could supply products and service. The research methodology consisted of two parts: normative and empirical research, which includes empirical analysis and statistical analysis. In this study, a statistical analysis of the empirical research was carried out. The study theoretically confirmed the shop choice properties by reviewing previous studies and performed an empirical analysis including cross tabulation based on secondary material. The findings were as follows: First, coffee shop choice properties varied by gender. Price advantage influenced the choice of both men and women; men preferred nearer coffee shops where they could buy coffee easily and more conveniently than women did. The atmosphere of the coffee shop had the greatest influence on both men and women, and shop atmosphere was thought to be the most important for age analysis. In the past, customers selected coffee shops solely to drink coffee. Now, they select the coffee shop according to its interior, menu variety, and atmosphere owing to improved quality and service of coffee shop brands. Second, the prices of the brands did not vary much because the coffee shops were similarly priced. The service was thought to be more important and to elevate service quality so that price and employee service and other properties did not have a great influence on shop choice. However, those working in the farming, forestry, fishery, and livestock industries were more concerned with the price than the shop atmosphere. College and graduate school students were also affected by inexpensive price. Third, shop choice properties varied depending on income. The shop location and shop atmosphere had a greater influence on shop choice. The customers in an income bracket of less than 2 million won selected low-price coffee shops more than those earning 6 million won or more. Therefore, price advantage had no relation with difference in income. The higher income group was not affected by employee service. Fourth, shop choice properties varied depending on place. For instance, customers at Ulsan were the most affected by the price, and the ones at Busan were the least affected. The shop location had the greatest influence among all of the properties. Among the places surveyed, Gwangju had the least influence. The alternate use of space in a coffee shop was thought to be important in all the cities under consideration. The customers at Ulsan were not affected by employee service, and they selected coffee shops according to quality and preference of shop atmosphere. Lastly, the price factor was found to be a little higher than other factors when customers frequently selected brands according to shop properties. Customers at Gwangju reacted to discounts more than those in other cities did, and the former gave less priority to the quality and taste of coffee. Brand preference varied depending on coffee shop location. Customers at Busan selected brands according to the coffee shop location, and those at Ulsan were not influenced by employee kindness and specialty. The implications of this study are that franchise coffee shop businesses should focus on customers rather than aggressive marketing strategies that increase the number of coffee shops. Thus, they should create an environment with a good atmosphere and set up coffee shops in places that customers have good access to. This study has some limitations. First, the respondents were concentrated in metropolitan areas. Secondary data showed that the number of respondents at Seoul was much more than that at Gyeonggi-do. Furthermore, the number of respondents at Gyeonggi-do was much more than those at the six major cities in the nation. Thus, the regional sample was not representative enough of the population. Second, respondents' ratio was used as a measurement scale to test the perception of shop choice properties and brand preference. The difficulties arose when examining the relation between these properties and brand preference, as well as when understanding the difference between groups. Therefore, future research should seek to address some of the shortcomings of this study: If the coffee shops are being expanded to local areas, then a questionnaire survey of consumers at small cities in local areas shall be conducted to collect primary material. In particular, variables of the questionnaire survey shall be measured using Likert scales in order to include perception on shop choice properties, brand preference, and repurchase. Therefore, correlation analysis, multi-regression, and ANOVA shall be used for empirical analysis and to investigate consumers' attitudes and behavior in detail.

  • PDF