• Title/Summary/Keyword: Business Performance Model

Search Result 2,174, Processing Time 0.028 seconds

Probability Map of Migratory Bird Habitat for Rational Management of Conservation Areas - Focusing on Busan Eco Delta City (EDC) - (보존지역의 합리적 관리를 위한 철새 서식 확률지도 구축 - 부산 Eco Delta City (EDC)를 중심으로 -)

  • Kim, Geun Han;Kong, Seok Jun;Kim, Hee Nyun;Koo, Kyung Ah
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.67-84
    • /
    • 2023
  • In some areas of the Republic of Korea, the designation and management of conservation areas do not adequately reflect regional characteristics and often impose behavioral regulations without considering the local context. One prominent example is the Busan EDC area. As a result, conflicts may arise, including large-scale civil complaints, regarding the conservation and utilization of these areas. Therefore, for the efficient designation and management of protected areas, it is necessary to consider various ecosystem factors, changes in land use, and regional characteristics. In this study, we specifically focused on the Busan EDC area and applied machine learning techniques to analyze the habitat of regional species. Additionally, we employed Explainable Artificial Intelligence techniques to interpret the results of our analysis. To analyze the regional characteristics of the waterfront area in the Busan EDC district and the habitat of migratory birds, we used bird observations as dependent variables, distinguishing between presence and absence. The independent variables were constructed using land cover, elevation, slope, bridges, and river depth data. We utilized the XGBoost (eXtreme Gradient Boosting) model, known for its excellent performance in various fields, to predict the habitat probabilities of 11 bird species. Furthermore, we employed the SHapley Additive exPlanations technique, one of the representative methodologies of XAI, to analyze the relative importance and impact of the variables used in the model. The analysis results showed that in the EDC business district, as one moves closer to the river from the waterfront, the likelihood of bird habitat increases based on the overlapping habitat probabilities of the analyzed bird species. By synthesizing the major variables influencing the habitat of each species, key variables such as rivers, rice fields, fields, pastures, inland wetlands, tidal flats, orchards, cultivated lands, cliffs & rocks, elevation, lakes, and deciduous forests were identified as areas that can serve as habitats, shelters, resting places, and feeding grounds for birds. On the other hand, artificial structures such as bridges, railways, and other public facilities were found to have a negative impact on bird habitat. The development of a management plan for conservation areas based on the objective analysis presented in this study is expected to be extensively utilized in the future. It will provide diverse evidential materials for establishing effective conservation area management strategies.

Deep Learning-Based Short-Term Time Series Forecasting Modeling for Palm Oil Price Prediction (팜유 가격 예측을 위한 딥러닝 기반 단기 시계열 예측 모델링)

  • Sungho Bae;Myungsun Kim;Woo-Hyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.45-57
    • /
    • 2024
  • This study develops a deep learning-based methodology for predicting Crude Palm Oil (CPO) prices. Palm oil is an essential resource across various industries due to its yield and economic efficiency, leading to increased industrial interest in its price volatility. While numerous studies have been conducted on palm oil price prediction, most rely on time series forecasting, which has inherent accuracy limitations. To address the main limitation of traditional methods-the absence of stationarity-this research introduces a novel model that uses the ratio of future prices to current prices as the dependent variable. This approach, inspired by return modeling in stock price predictions, demonstrates superior performance over simple price prediction. Additionally, the methodology incorporates the consideration of lag values of independent variables, a critical factor in multivariate time series forecasting, to eliminate unnecessary noise and enhance the stability of the prediction model. This research not only significantly improves the accuracy of palm oil price prediction but also offers an applicable approach for other economic forecasting issues where time series data is crucial, providing substantial value to the industry.

An Empirical Study in Relationship between Franchisor's Leadership Behavior Style and Commitment by Focusing Moderating Effect of Franchisee's Self-efficacy (가맹본부의 리더십 행동유형과 가맹사업자의 관계결속에 관한 실증적 연구 - 가맹사업자의 자기효능감의 조절효과를 중심으로 -)

  • Yang, Hoe-Chang;Lee, Young-Chul
    • Journal of Distribution Research
    • /
    • v.15 no.1
    • /
    • pp.49-71
    • /
    • 2010
  • Franchise businesses in South Korea have contributed to economic growth and job creation, and its growth potential remains very high. However, despite such virtues, domestic franchise businesses face many problems such as the instability of franchisor's business structure and weak financial conditions. To solve these problems, the government enacted legislation and strengthened franchise related laws. However, the strengthening of laws regulating franchisors had many side effects that interrupted the development of the franchise business. For example, legal regulations regarding franchisors have had the effect of suppressing the franchisor's leadership activities (e.g. activities such as the ability to advocate the franchisor's policies and strategies to the franchisees, in order to facilitate change and innovation). One of the main goals of the franchise business is to build cooperation between the franchisor and the franchisee for their combined success. However, franchisees can refuse to follow the franchisor's strategies because of the current state of franchise-related law and government policy. The purpose of this study to explore the effects of franchisor's leadership style on franchisee's commitment in a franchise system. We classified leadership styles according to the path-goal theory (House & Mitchell, 1974), and it was hypothesized and tested that the four leadership styles proposed by the path-goal theory (i.e. directive, supportive, participative and achievement-oriented leadership) have different effects on franchisee's commitment. Another purpose of this study to explore the how the level of franchisee's self-efficacy influences both the franchisor's leadership style and franchisee's commitment in a franchise system. Results of the present study are expected to provide important theoretical and practical implications as to the role of franchisor's leadership style, as restricted by government regulations and the franchisee's self-efficacy, which could be needed to improve the quality of the long-term relationship between the franchisor and franchisee. Quoted by Northouse(2007), one problem regarding the investigation of leadership is that there are almost as many different definitions of leadership as there are people who have tried to define it. But despite the multitude of ways in which leadership has been conceptualized, the following components can be identified as central to the phenomenon: (a) leadership is a process, (b) leadership involves influence, (c) leadership occurs in a group context, and (d) leadership involves goal attainment. Based on these components, in this study leadership is defined as a process whereby franchisor's influences a group of franchisee' to achieve a common goal. Focusing on this definition, the path-goal theory is about how leaders motivate subordinates to accomplish designated goals. Drawing heavily from research on what motivates employees, path-goal theory first appeared in the leadership literature in the early 1970s in the works of Evans (1970), House (1971), House and Dessler (1974), and House and Mitchell (1974). The stated goal of this leadership theory is to enhance employee performance and employee satisfaction by focusing on employee motivation. In brief, path-goal theory is designed to explain how leaders can help subordinates along the path to their goals by selecting specific behaviors that are best suited to subordinates' needs and to the situation in which subordinates are working (Northouse, 2007). House & Mitchell(1974) predicted that although many different leadership behaviors could have been selected to be a part of path-goal theory, this approach has so far examined directive, supportive, participative, and achievement-oriented leadership behaviors. And they suggested that leaders may exhibit any or all of these four styles with various subordinates and in different situations. However, due to restrictive government regulations, franchisors are not in a position to change their leadership style to suit their circumstances. In addition, quoted by Northouse(2007), ssubordinate characteristics determine how a leader's behavior is interpreted by subordinates in a given work context. Many researchers have focused on subordinates' needs for affiliation, preferences for structure, desires for control, and self-perceived level of task ability. In this study, we have focused on the self-perceived level of task ability, namely, the franchisee's self-efficacy. According to Bandura (1977), self-efficacy is chiefly defined as the personal attitude of one's ability to accomplish concrete tasks. Therefore, it is not an indicator of one's actual abilities, but an opinion of the extent of how one can use that ability. Thus, the judgment of maintain franchisee's commitment depends on the situation (e.g., government regulation and policy and leadership style of franchisor) and how it affects one's ability to mobilize resources to deal with the task, so even if people possess the same ability, there may be differences in self-efficacy. Figure 1 illustrates the model investigated in this study. In this model, it was hypothesized that leadership styles would affect the franchisee's commitment, and self-efficacy would moderate the relationship between leadership style and franchisee's commitment. Theoretically, quoted by Northouse(2007), the path-goal approach suggests that leaders need to choose a leadership style that best fits the needs of subordinates and the work they are doing. According to House & Mitchell (1974), the theory predicts that a directive style of leadership is best in situations in which subordinates are dogmatic and authoritarian, the task demands are ambiguous, and the organizational rule and procedures are unclear. In these situations, franchisor's directive leadership complements the work by providing guidance and psychological structure for franchisees. For work that is structured, unsatisfying, or frustrating, path-goal theory suggests that leaders should use a supportive style. Franchisor's Supportive leadership offers a sense of human touch for franchisees engaged in mundane, mechanized activity. Franchisor's participative leadership is considered best when a task is ambiguous because participation gives greater clarity to how certain paths lead to certain goals; it helps subordinates learn what actions leads to what outcome. Furthermore, House & Mitchell(1974) predicts that achievement-oriented leadership is most effective in settings in which subordinates are required to perform ambiguous tasks. Marsh and O'Neill (1984) tested the idea that organizational members' anger and decline in performance is caused by deficiencies in their level of effort and found that self-efficacy promotes accomplishment, decreases stress and negative consequences like depression and emotional instability. Based on the extant empirical findings and theoretical reasoning, we posit positive and strong relationships between the franchisor's leadership styles and the franchisee's commitment. Furthermore, the level of franchisee's self-efficacy was thought to maintain their commitment. The questionnaires sent to participants consisted of the following measures; leadership style was assessed using a 20 item 7-point likert scale developed by Indvik (1985), self-efficacy was assessed using a 24 item 6-point likert scale developed by Bandura (1977), and commitment was assessed using a 6 item 5-point likert scale developed by Morgan & Hunt (1994). Questionnaires were distributed to Korean optical franchisees in Seoul. It took about 20 days to complete the data collection. A total number of 140 questionnaires were returned and complete data were available from 137 respondents. Results of multiple regression analyses testing the relationships between the each of the four styles of leadership shown by the franchisor as independent variables and franchisee's commitment as the dependent variable showed that the relationship between supportive leadership style and commitment ($\beta$=.13, p<.001),and the relationship between participative leadership style and commitment ($\beta$=.07, p<.001)were significant. However, when participants divided into high and low self-efficacy groups, results of multiple regression analyses showed that only the relationship between achievement-oriented leadership style and commitment ($\beta$=.14, p<.001) was significant in the high self-efficacy group. In the low self-efficacy group, the relationship between supportive leadership style and commitment ($\beta$=.17, p<.001),and the relationship between participative leadership style and commitment ($\beta$=.10, p<.001) were significant. The study focused on the franchisee's self-efficacy in order to explore the possibility that regulation, originally intended to protect the franchisee, may not be the most effective method to maintain the relationships in a franchise business. The key results of the data analysis regarding the moderating role of self-efficacy between leadership behavior style as proposed by path-goal and commitment theory were as follows. First, this study proposed that franchisor should apply the appropriate type of leadership behavior to strengthen the franchisees commitment because the results demonstrated that supportive and participative leadership styles by the franchisors have a positive influence on the franchisee's level of commitment. Second, it is desirable for franchisor to validate the franchisee's efforts, since the franchisee's characteristics such as self-efficacy had a substantial, positive effect on the franchisee's commitment as well as being a meaningful moderator between leadership and commitment. Third, the results as a whole imply that the government should provide institutional support, namely to put the franchisor in a position to clearly identify the characteristics of their franchisees and provide reasonable means to administer the franchisees to achieve the company's goal.

  • PDF

The Effects of Environmental Dynamism on Supply Chain Commitment in the High-tech Industry: The Roles of Flexibility and Dependence (첨단산업의 환경동태성이 공급체인의 결속에 미치는 영향: 유연성과 의존성의 역할)

  • Kim, Sang-Deok;Ji, Seong-Goo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.2
    • /
    • pp.31-54
    • /
    • 2007
  • The exchange between buyers and sellers in the industrial market is changing from short-term to long-term relationships. Long-term relationships are governed mainly by formal contracts or informal agreements, but many scholars are now asserting that controlling relationship by using formal contracts under environmental dynamism is inappropriate. In this case, partners will depend on each other's flexibility or interdependence. The former, flexibility, provides a general frame of reference, order, and standards against which to guide and assess appropriate behavior in dynamic and ambiguous situations, thus motivating the value-oriented performance goals shared between partners. It is based on social sacrifices, which can potentially minimize any opportunistic behaviors. The later, interdependence, means that each firm possesses a high level of dependence in an dynamic channel relationship. When interdependence is high in magnitude and symmetric, each firm enjoys a high level of power and the bonds between the firms should be reasonably strong. Strong shared power is likely to promote commitment because of the common interests, attention, and support found in such channel relationships. This study deals with environmental dynamism in high-tech industry. Firms in the high-tech industry regard it as a key success factor to successfully cope with environmental changes. However, due to the lack of studies dealing with environmental dynamism and supply chain commitment in the high-tech industry, it is very difficult to find effective strategies to cope with them. This paper presents the results of an empirical study on the relationship between environmental dynamism and supply chain commitment in the high-tech industry. We examined the effects of consumer, competitor, and technological dynamism on supply chain commitment. Additionally, we examined the moderating effects of flexibility and dependence of supply chains. This study was confined to the type of high-tech industry which has the characteristics of rapid technology change and short product lifecycle. Flexibility among the firms of this industry, having the characteristic of hard and fast growth, is more important here than among any other industry. Thus, a variety of environmental dynamism can affect a supply chain relationship. The industries targeted industries were electronic parts, metal product, computer, electric machine, automobile, and medical precision manufacturing industries. Data was collected as follows. During the survey, the researchers managed to obtain the list of parts suppliers of 2 companies, N and L, with an international competitiveness in the mobile phone manufacturing industry; and of the suppliers in a business relationship with S company, a semiconductor manufacturing company. They were asked to respond to the survey via telephone and e-mail. During the two month period of February-April 2006, we were able to collect data from 44 companies. The respondents were restricted to direct dealing authorities and subcontractor company (the supplier) staff with at least three months of dealing experience with a manufacture (an industrial material buyer). The measurement validation procedures included scale reliability; discriminant and convergent validity were used to validate measures. Also, the reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than.70. A series of exploratory factor analyses was conducted. We conducted confirmatory factor analyses to assess the validity of our measurements. A series of chi-square difference tests were conducted so that the discriminant validity could be ensured. For each pair, we estimated two models-an unconstrained model and a constrained model-and compared the two model fits. All these tests supported discriminant validity. Also, all items loaded significantly on their respective constructs, providing support for convergent validity. We then examined composite reliability and average variance extracted (AVE). The composite reliability of each construct was greater than.70. The AVE of each construct was greater than.50. According to the multiple regression analysis, customer dynamism had a negative effect and competitor dynamism had a positive effect on a supplier's commitment. In addition, flexibility and dependence had significant moderating effects on customer and competitor dynamism. On the other hand, all hypotheses about technological dynamism had no significant effects on commitment. In other words, technological dynamism had no direct effect on supplier's commitment and was not moderated by the flexibility and dependence of the supply chain. This study makes its contribution in the point of view that this is a rare study on environmental dynamism and supply chain commitment in the field of high-tech industry. Especially, this study verified the effects of three sectors of environmental dynamism on supplier's commitment. Also, it empirically tested how the effects were moderated by flexibility and dependence. The results showed that flexibility and interdependence had a role to strengthen supplier's commitment under environmental dynamism in high-tech industry. Thus relationship managers in high-tech industry should make supply chain relationship flexible and interdependent. The limitations of the study are as follows; First, about the research setting, the study was conducted with high-tech industry, in which the direction of the change in the power balance of supply chain dyads is usually determined by manufacturers. So we have a difficulty with generalization. We need to control the power structure between partners in a future study. Secondly, about flexibility, we treated it throughout the paper as positive, but it can also be negative, i.e. violating an agreement or moving, but in the wrong direction, etc. Therefore we need to investigate the multi-dimensionality of flexibility in future research.

  • PDF

A Study on Antecedents of Ethical Leadership of Power Retailers, : Focusing on the Relationship between Discount Stores and Their Suppliers (대형 유통업체 윤리적 리더십의 선행변수에 관한 연구 : 할인점과 공급업체 간 관계를 중심으로)

  • Kim, Sang-Deok
    • Journal of Distribution Research
    • /
    • v.17 no.3
    • /
    • pp.59-92
    • /
    • 2012
  • With accumulated research evidence, there is little doubt that leadership behavior is related to a wide variety of positive individual and organizational outcomes. Indeed, leadership behavior has been empirically linked to increased employee satisfaction, organizational commitment, extra effort, turnover intention, organizational citizenship behavior, and overall employee performance. Although leadership behavior has been linked to a number of positive organizational outcomes, research regarding the antecedents of such behavior is limited. Especially there is little research dealing with the antecedents of inter-organizational leadership behavior. This study interests in inter-organizational ethical leadership among marketing channel members. In both the mass media and the academic association, there has been a surge in interest in the ethical and unethical behavior of leaders. Although the corporate scandals in recent years may explain much of the mass media and popular focus, academics' interest has been limited by evidence that ethical leadership behavior is associated with both positive and negative inter-organizational processes and performances. This study tried to contribute to this body of knowledge by examining antecedents of ethical leadership. Ethical leadership is defined "the demonstration of normatively appropriate conduct through personal actions and interpersonal relationships, and the promotion of such conduct to followers through two-way communication, reinforcement, and decision-making." Ethical leaders not only inform individuals of the behefits of ethical behavior and the cost of inappropriate behavior, such leaders also set clear standards and use rewards and fair and balanced punishment to hold followers accountable for their ethical conduct. Despite the assume importance and prominence of ethical leadership among organizations, there are still many questions relating to its antecedents and consequences. One is whether the likelihood of an leading organization being perceived as an ethical leader among other following organizations in marketing channels can be predicted using its characteristics and inter-organizational relationship maintenance skills. Identifying trait and skill antecedents will aid in the development of strategies for selecting and developing ethical leaders and determining the best means to reinforce ethical behaviors. The purpose of this study is to investigate the effects of three categorized variables on ethical leadership of channel leader. To be concrete, this study develops a model of the antecedents of three conceptually distinct forms of channel leader characteristics, such as organizational traits, inter-organizational relationship maintenance strategies, and supplier management strategies, and tests the hypothesized differential effects on ethical leadership of marketing channel leaders. The reason why this study deals with discount store channel is that there is very strong inter-dependence between a discount store and its suppliers. Their strong inter-dependence makes their relationship as the relationship between a leader and suppliers and creates an atmosphere that leadership occur without difficulty. The research model is as follows. For the purpose of empirical testing, 295 respondents of suppliers of discount store channel in Korea were surveyed. The procedures included scale reliability, and discriminant and convergent validity were used to validate measures. Also, the reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than .70. This study conducted confirmatory factor analyses to assess the validity of our measurements. All items loaded significantly on their respective constructs(with the lowest t-value being 15.2), providing support for convergent validity. We then examined composite reliability and average variance extracted(AVE). The composite reliability of each construct was greater than .70. The AVE of each construct was greater than .50. This study tested research model using Partial Least Square(PLS). The estimation of the structural equation model revealed an acceptable fit of the model to the data($r^2$=.851). Thus, This study concluded that the model fit was considered acceptable. The results of PLS are as follows. The results indicated that conscientiousness, openness, conflict management, social networks, training, fair reward had positive effects on ethical leadership of channel leaders. On the other hand, emotional insecure had negative effect and agreeableness, assurance, and inter-organizational communication had no significant effect on supply chain leadership.

  • PDF

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis (차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구)

  • Hae Jin Park;Jae Suk Choi;Sang Goo Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.121-142
    • /
    • 2023
  • As the number and weight of imported food are steadily increasing, safety management of imported food to prevent food safety accidents is becoming more important. The Ministry of Food and Drug Safety conducts on-site inspections of foreign food facilities before customs clearance as well as import inspection at the customs clearance stage. However, a data-based safety management plan for imported food is needed due to time, cost, and limited resources. In this study, we tried to increase the efficiency of the on-site inspection by preparing a machine learning prediction model that pre-selects the companies that are expected to fail before the on-site inspection. Basic information of 303,272 foreign food facilities and processing businesses collected in the Integrated Food Safety Information Network and 1,689 cases of on-site inspection information data collected from 2019 to April 2022 were collected. After preprocessing the data of foreign food facilities, only the data subject to on-site inspection were extracted using the foreign food facility_code. As a result, it consisted of a total of 1,689 data and 103 variables. For 103 variables, variables that were '0' were removed based on the Theil-U index, and after reducing by applying Multiple Correspondence Analysis, 49 characteristic variables were finally derived. We build eight different models and perform hyperparameter tuning through 5-fold cross validation. Then, the performance of the generated models are evaluated. The research purpose of selecting companies subject to on-site inspection is to maximize the recall, which is the probability of judging nonconforming companies as nonconforming. As a result of applying various algorithms of machine learning, the Random Forest model with the highest Recall_macro, AUROC, Average PR, F1-score, and Balanced Accuracy was evaluated as the best model. Finally, we apply Kernal SHAP (SHapley Additive exPlanations) to present the selection reason for nonconforming facilities of individual instances, and discuss applicability to the on-site inspection facility selection system. Based on the results of this study, it is expected that it will contribute to the efficient operation of limited resources such as manpower and budget by establishing an imported food management system through a data-based scientific risk management model.

Analysis of Service Factors on the Management Performance of Korea Railroad Corporation - Based on the railroad statistical yearbook data - (한국철도공사 경영성과에 미치는 서비스 요인분석 -철도통계연보 데이터를 대상으로-)

  • Koo, Kyoung-Mo;Seo, Jeong-Tek;Kang, Nak-Jung
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.4
    • /
    • pp.127-144
    • /
    • 2021
  • The purpose of this study is to derive service factors based on the "Rail Statistical Yearbook" data of railroad service providers from 1990 to 2019, and to analyze the effect of the service factors on the operating profit ratio(OPR), a representative management performance variable of railroad transport service providers. In particular, it has academic significance in terms of empirical research to evaluate whether the management innovation of the KoRail has changed in line with the purpose of establishing the corporation by dividing the research period into the first period (1990-2003) and the latter (2004-2019). The contents of this study investigated previous studies on the quality of railway passenger transportation service and analyzed the contents of government presentation data related to the management performance evaluation of the KoRail. As an empirical analysis model, a research model was constructed using OPR as a dependent variable and service factor variables of infrastructure, economy, safety, connectivity, and business diversity as explanatory variables based on the operation and management activity information during the analysis period 30 years. On the results of research analysis, OPR is that the infrastructure factor is improved by structural reform or efficiency improvement. And economic factors are the fact that operating profit ratio improves by reducing costs. The safety factor did not reveal the significant explanatory power of the regression coefficient, but the sign of influence was the same as the prediction. Connectivity factor reveals a influence on differences between first period and latter, but OPR impact direction is changed from negative in before to positive in late. This is an evironment in which connectivity is actually realized in later period. On diversity factor, there is no effect of investment share in subsidiaries and government subsidies on OPR.

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.