• Title/Summary/Keyword: Burning rate(연소속도)

Search Result 116, Processing Time 0.024 seconds

Combustion Characteristics of Al powder with Water Suspension (Al 분말과 Water 혼합물의 연소특성 연구)

  • Ki, Wan-Do;Kim, Kwang-Yeon;Shmelev, Vladimir;Cho, Yong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.157-162
    • /
    • 2012
  • The basic study for combustion characteristics of micron-sized aluminum powder with water suspension was carried out. Under atmospheric pressure, the combustion characteristics of aluminum powder with water suspension was studied by adjust the equivalent ratio and the density of a mixture which effect on burning rate. Based on atmospheric pressure's result, the device for the combustion characteristics of aluminum powder with water suspension under high-pressure environment was developed. In the pressure range from 2 to 50 atm the effect of pressure to burning rate was same as the case of nano-aluminum with water suspension, but the pressure range from 50 to 70 atm the sharp increase in burning rate was observed. In the experiment of varying the equivalence ratio, the combustion did not proceed in the condition of excess oxidizer (eq = 1.5).

  • PDF

Study on the Burning Rate Enhancement of HTPB/AP/Zr Solid Propellants for Nozzleless Boosters (무노즐 부스터 적용을 위한 HTPB/AP/Zr계 고체 추진제의 연소속도 증진 연구)

  • Lee, Sunyoung;Ryu, Taeha;Hong, Myungpyo;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.18-25
    • /
    • 2017
  • The study for the combustion characteristics of propellants for nozzleless boosters was carried out. The metal fuels of Al and Zr were introduced into solid propellant formulations in order to enhance the density-specific impulse and the high burning rate with low pressure exponent was investigated as the major combustion characteristic of propellant to design nozzleless boosters. The burning rate of Zr-containing propellant was higher than Al-containing propellant and, $13{\mu}m$ Zr-containing propellant exhibited the burning rate of 35 mm/s (at 1000 psi)and pressure exponent of 0.3282. The benefit of using Al and Zr-containing propellant into nozzleless boosters was demonstrated in these results.

An Experimental Study on the Ventilation velocity of the Variation of Burning rate in Tunnel Fires - Heptane pool fire case (터널 화재시 배연속도가 연소율변화에 미치는 실험적 연구 - Heptane 풀화재 경우)

  • Ryou, Hong-Sun;Yang, Seung-Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.109-117
    • /
    • 2005
  • In this study, the 1/20 reduced-scale experiments using Froude scaling were conducted to investigate the ventilation velocity of the variation of burning rate in tunnel fires. The heptane square pool fire with heat release rate ranging from 3.71~15.6 kW were used. The burning rate of fuel was obtained by measuring mass using load cell and temperature distributions were measured by K-type theomocouples in order to investigate smoke movement. The ventilation velocity in the tested tunnel was controlled by inverter of the wind tunnel. In heptane pool fire case, the increase in ventilation velocity incresed the burning rate due to the direct supply of oxygen to the fire plume. For the same dimensionless velocity($\bar{V}$), burning rate increased as the size of pool fire decreased.

  • PDF

Study on Optimization of Propellant Shape with Two-side Burning Surface for Continuous Variable Thruster (연속가변형 추력기용 이면연소 추진제 형상 최적화 연구)

  • Heo, Junyoung;Park, Iksoo;Jin, Jungkun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.364-367
    • /
    • 2017
  • The basic design concept of the DACS(Divert and Attitude Control System) propellant is presented and the geometry optimization of the DACS propellant with limited outer diameter and maximum burning rate of the propellant is performed. Two-side burning surface conditions burned at the core and the one side of the propellant are applied to the propellant. And the optimized values for the radius of core, length of propellant, angle of end-side surface are obtained by the PSO algorithm. The direction for DACS propellant design is suggested by analyzing optimized design points for various burning rate.

  • PDF

A study on ultrasonic signal denoising techniques for improving ultrasonic burning rate measurements of solid propellants (고체추진제 연소속도 측정의 정밀도 향상을 위한 초음파 신호 잡음제거 기술 연구)

  • Jeon, Su-Kyun;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.200-203
    • /
    • 2009
  • Ultrasonic techniques have the advantage of determining the burning rates with wide range of pressure in only a single test. However, ultrasonic techniques have a drawback, which is that they are using high frequency transducers and it is easily affected by noise. Therefore, ultrasonic measurement method needs noise reduction algorithm to improve or grantee accuracy of burning rate measurements of solid propellants using ultrasound. Thus, in the present study, we propose a noise reduction method of measured ultrasonic signals by applying wavelet shrinkage.

  • PDF

A Numerical Analysis on Combustion Characteristics of the Gasoline Engine using Methanol Reformulated Fuels under WOT Condition (전부하 운전조건에서 메탄올 개질연료를 사용한 가솔린 엔진의 연소특성에 대한 수치해석)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2011
  • This research is to decide the possibility of using RM50(reformulated methanol fuel) without any modification of engine by the method of numerical analysis. Comparing the heat release rate, the difference among each fuel was decreased according to the increase of the engine speed, and the maximum heat release rate was higher in the order of RM50 and gasoline fuel. Also, this order corresponds to the order of burning speed. RM50 had the higher turbulent burning speed, and the curve of turbulent intensity was showed similar tendency to the curve of turbulent burning speed. RM50 had relatively high burning speed, short quenching length, high temperature in cylinder, so that it might increase NO emission, but owing to chemical reaction dynamics, it was decreased NO emission. Therefore, in order to predict the possibility of using RM50, it is needed to consider not only the temperature in cylinder by low heating value, but also combustion characteristics including burning speed.

Erosive burning and combustion instability of the solid rocket motor with large initial burning surface area (큰 초기 연소면적을 가지는 고체 모타의 침식 연소 및 연소 불안정)

  • Jin, Jungkun;Cha, Hong-seok;Lee, Dohyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1115-1121
    • /
    • 2017
  • In order to obtain high thrust at the beginning of the flight, the solid rocket motor with large initial burning surface area was designed and tested. From the static firing test, lower initial thrust was obtained compared with the expected thrust based on the internal ballistic prediction due to the negative erosive burning effect which reduced the burning rate estimated by APN Law. In addition, the radial mode combustion instability was observed with 8 fins grain configuration. This instability was removed after the odd number of fins were used.

  • PDF

Study of the Inhibition on the Combustion of PEBAX/AP Thermoplastic Propellant (PEBAX/AP 열가소성 고체추진제의 연소 억제 방안 연구)

  • Lee, Hyoungjin;Jung, Haeyoung;Cho, Junhyun;Lee, Youngguen;Lee, Hojin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.18-26
    • /
    • 2013
  • This study suggested techniques to reduce burning rate and their effects for the AP thermoplastic composite propellant. Burning rate obtained through ground tests using a small size motor were analyzed to investigate the effects of AP particle size and LiF of 0.5~2.0% on the inhibition reaction for the PEBAX/AP thermoplastic propellant. The results showed that utilization of large size particle of AP and addition of LiF under 2.0% can reduce the burning rate sufficiently and their quantitative effects were suggested in this paper.

Study on Combustion Characteristics of Thermoplastic Solid Propellants Embedded with Metal Wires (금속선이 삽입된 열가소성 추진제의 연소 특성 고찰)

  • Lee, Sunyoung;Oh, Jongyun;Lee, Hyunseob;Khil, Taeock;Kim, Minho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • In this paper, the combustion characteristics of solid propellant embedded with metal wires were analyzed by the ground tests of motors. The propellant grains were made of thermoplastic propellants with Al and Cu as metal wires for the enhancement of burning area and designed with cone shape for better ignition. These metals were used to confirm the enhancement of burning rate on thermal diffusivity properties. The internal ballistics analysis and ground test were performed to investigate the effect of burning rate for each metal wire. We obtained the results of burning rate on a difference of thermal diffusivity of each metal wire with well-made propellant grains.

Unsteady Internal Ballistic Analysis for Solid Rocket Motors with Erosive Burning (침식연소를 고려한 고체로켓의 비정상 내탄도 해석 기법)

  • Cho, Min-Gyung;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • A typical unsteady internal ballistic analysis model was proposed to take account of the erosive burning with the variance of local velocity and pressure along the grain surface of a solid rocket combustor. To validate the model of concern in the study, both cases of non-erosive and erosive burning were compared with the previous researches with marginal accuracy. It was quantitatively investigated that the combustion pressure, grain length, initial temperature, and vaporization temperature of propellant affect the erosive burning characteristics.