• Title/Summary/Keyword: Buoyancy effects

Search Result 138, Processing Time 0.022 seconds

Large-eddy simulation on gas mixing induced by the high-buoyancy flow in the CIGMAfacility

  • Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1742-1756
    • /
    • 2023
  • The hydrogen behavior in a nuclear containment vessel is a significant issue when discussing the potential of hydrogen combustion during a severe accident. After the Fukushima-Daiichi accident in Japan, we have investigated in-depth the hydrogen transport mechanisms by utilizing experimental and numerical approaches. Computational fluid dynamics is a powerful tool for better understanding the transport behavior of gas mixtures, including hydrogen. This paper describes a Large-eddy simulation of gas mixing driven by a high-buoyancy flow. We focused on the interaction behavior of heat and mass transfers driven by the horizontal high-buoyant flow during density stratification. For validation, the experimental data of the Containment InteGral effects Measurement Apparatus (CIGMA) facility were used. With a high-power heater for the gas-injection line in the CIGMA facility, a high-temperature flow of approximately 390 ℃ was injected into the test vessel. By using the CIGMA facility, we can extend the experimental data to the high-temperature region. The phenomenological discussion in this paper helps understand the heat and mass transfer induced by the high-buoyancy flow in the containment vessel during a severe accident.

Weightlessness in Water : Its Unexpected Mechanical Effects on Freestyle Swimming

  • Yanai, Toshimasa
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.393-405
    • /
    • 2002
  • When our body is immersed in water, we experience weightlessness. The degree of weightlessness that we experience varies depending on the proportion of the body immersed in water, being governed by the relationship between the weight of body and the buoyant force acting on the body. Human body during the performance of swimming in no exception to these influences. Swimmers body is subject to a time and position dependent force system. Even the magnitude of the buoyant force acting on the swimmers body at every given instant and the corresponding position of the CB change continuously. The findings of this study support the following conclusions. The buoyancy torque was the primary source of bodyroll exhibited by front crawl swimmers performing at distance pace, accounting for 88 % of the bodyroll. Faster swimmers used buoyancy more effectively to generate bodyroll, partially supporting the postulation that an effective use of buoyancy for bodyroll may reduce the generated hydrodynamic forces to be wasted in non-propulsive directions and maximize forward propulsion.

Influential Parameters on Offshore Jacket Structure Launching (해양 자켓구조물 진수 영향인자에 대한 고찰)

  • 조철희;김경수;김재환;이수훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.141-147
    • /
    • 2001
  • The launching process is one of the most critical operations for large structure in offshore installation. Since as the size increases it limits the availability of offshore crane facilities, the large jacket structures are often installed by launching. As the structure approaches to tilt beam, it reaches critical load, and there are parameters to affect on launching procedure. The major influential parameters are trim, draft of barge, center of gravity, center of buoyancy and reserved buoyancy of jacket. As increasing of trim and draft, structural loads tend to decrease. The trim is found to be more contributing than draft on structural loads. Therefore the trim should be increased so as to decrease structural loads and to avoid stalling of structure and submergence of stern. During the launching process, the distance between jacket and seabed should be investigated which differs from the amount of reserved buoyancy and launching condition of barge. In this paper the effects of parameters on launching process are numerically investigated.

  • PDF

A Study on Buoyancy Effects in Double-Diffusive Convecting System (이중확산대류계에서의 부력효과에 관한 연구(Ⅰ)- 실험적 연구 -)

  • Kim, Yang-Hun;Hyun, Myung-Taek;Kim, Min-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.121-129
    • /
    • 1999
  • Double-diffusive convection with verical temperature and concentration gradients in thermally stratified fluids has been investigated experimentally using an electrochemical technique. Cupric sulfuric-sulffuric acid solution confined between two horizontal copper electrodes was used. The change of thermal and solutal buoyance has no influence on the range of voltage for the limiting current. Due to Soret effect, the onset time of natural convection is delayed as the stabilizing thermal buoyancy decreases. Also it is found that the shrinkage of the unstabilizing solutal buoyancy makes the onset of natural convection retard. Multi-layered convective phenomena do not appear because cupric sulfate-sulfuric acid solution is thermally stratified, and heat diffuses faster than cupric sulfate solfate solution.

  • PDF

A Study on the Characteristics of Heat Transfer in Quadrangle Duct with Solar Absorber Plate (태양열 집열면이 있는 4각 덕트 내의 열전달 특성에 관한 연구)

  • 고동국;조대진;윤석주;박상규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1014-1022
    • /
    • 2002
  • This paper analyzed the characteristics of heat transfer in quadangle duct with absorber plate by solar radiation. Effects o( Reynolds number on increasing temperature at outlet for variation of absorber plate temperature were analyzed by using numerical analysis technique. And also the effects of turbulent intensity of inlet flow on increasing temperature at outlet for various duct height and effects of inlet aspect ratio of quadrangle duct and position of heating surface on the outlet temperature were analysed. As the results, Outlet temperature was greatly influenced in low Reynolds number. And the highest outlet temperature distribution appeared on the inlet aspect ratio 2 because of the buoyancy effect.

A Study on Effects of Flame Curvature in Oscillatory Laminar Lifted-flames (진동하는 층류부상화염에서 화염곡률 효과에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Experiment is conducted to grasp effects of flame curvature on flame behavior in laminar lifted-jet flames. Nozzle diameters of 0.1 and 1.0mm are used to vary flame curvature of edge flame. There exist three types of edge flame oscillation. These edge flame oscillations may be caused by radial heat loss at all flame conditions, by fuel Lewis numbers near or larger than unity with the help of appreciable radial conduction heat loss, and by buoyancy effects. These are confirmed by the analysis of oscillation frequencies. It is however seen that the change of lift-off height through edge-flame oscillation is mainly due to radial heat loss irrespective of Lewis number and buoyancy.

  • PDF

Effects of Fuel Nozzle Diameter in the Behavior of Laminar Lifted Flame (노즐 직경 변화가 층류부상화염 거동에 미치는 영향)

  • Kim, Tae-Kwon;Um, Hyen-Soo;Kim, Kyung-Ho;Ha, Ji-Soo;Park, Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 2008
  • Experimental study was conducted to clarify the importance of buoyancy effects in laminar lifted flames which have been well understood by cold jet similarity theory. To evaluate buoyancy effects, lifted flame behaviors were systematically observed in methane and propane lifted flames diluted with He as changing the fuel nozzle diameter from 0.1 to 6 mm. Important physical parameters such as fuel strength, flame stretch and flame curvature, which were derived through simple physical scaling laws, were estimated. It is experimentally proven that buoyancy effects are important in relatively large fuel nozzle diameter and large fuel dilution with He. The results of Chen et al., which displayed the existence of stably lifted flames for 0.5

  • PDF

Effects of inert gas (Ne) on thermal convection of mercurous chloride system of $Hg_2Cl_2$ and Ne during physical vapor transport

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.225-231
    • /
    • 2008
  • For an aspect ratio (transport length-to-width) of 5, Pr=1.13, Le=1.91, Pe=4.3, Cv=1.01, $P_B=20\;Torr$, the effects of addition of inert gas Ne on thermally buoyancy-driven convection ($Gr=2.44{\times}10^3$) are numerically investigated for further understanding and insight into essence of transport phenomena in two dimensional horizontal enclosures. For $10K{\leq}{\Delta}T{\leq}50\;K$, the crystal growth rate increases from 10 K up to 20 K, and then is slowly decreased until ${\Delat}T=50\;K$, which is likely to be due to the effects of thermo-physical properties stronger than the temperature gradient corresponding to driving force for thermal convection. The dimensional maximum velocity gratitude reflecting the intensity of thermal convection is directly and linearly proportional to the temperature difference between the source and crystal regions. The rate is first order-exponentially decreased for $2{\leq}Ar{\leq}5$. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. In addition, the rate is first order exponentially decayed for $10{\leq}P_B{\leq}200\;Torr$.

A two dimensional analysis of the evolution of the particle size distribution in particle laden high temperature jet flows including the effects of coagulation and buoyancy (입자가 부유된 고온의 제트유동에서 응집과 부력을 고려한 이차원 입자크기 분포해석)

  • Lee, Bang-Won;Choe, Man-Su;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.380-391
    • /
    • 1997
  • A numerical study has been done on the evolution of particle size distribution in particle laden high temperature jet flows undergoing convection, diffusion, thermophoresis and coagulation. The dynamic behavior of these particles have been modelled by approximating the particle size distribution by a lognormal function throughout the process and the moments of the particle size distribution have been used to solve the general dynamic equation. The size distributions of spherical particles in the radial and axial direction have been obtained including the effect of buoyancy. Of particular interests are the variations of geometric mean diameter, number concentration and polydispersity. Results show that buoyancy significantly alters the size distribution in both axial and radial direction. One dimensional analysis for non-spherical particles has also been done and the results have been compared with the existing experimental data.

Environmental Factors in a Realistic 3D Fishing-Net Simulation

  • Yoon, Joseph;Kim, Young-Bong
    • International Journal of Contents
    • /
    • v.10 no.3
    • /
    • pp.84-89
    • /
    • 2014
  • The mass-spring model has been typically employed in physical-based simulators for clothes or patches. The mass-spring model frequently utilizes equal mass and the gravity factor. The model structure of masses supports a shape applicable to fishing nets. Therefore, to create a simulation model of a fishing net, we consider the mass-spring model and adopt the tidal-current and buoyancy effects in underwater environments. These additional factors lead to a more realistic visualization of fishing-net simulations. In this paper, we propose a new mass-spring model for a fishing-net and a method to simplify the calculation equations for a real-time simulation of a fishing-net model. Our 3D mass-spring model presents a mesh-structure similar to a typical mass-spring model except that each intersection point can have different masses. The motion of each mass is calculated periodically considering additional dynamics. To reduce the calculation time, we attempt to simplify the mathematical equations that include the effect of the tidal-current and buoyancy. Through this research, we expect to achieve a real-time and realistic simulation for the fishing net.