
84 Young-Bong Kim : Environmental Factors in a Realistic 3D Fishing-Net Simulation 
 

International Journal of Contents, Vol.10, No.3, Sep. 2014 

Environmental Factors in a Realistic 3D Fishing-Net Simulation 
 

Joseph Yoon 
Dept. of IT Convergence and Application Engineering 

Pukyong National University, DaeYeon Campus, 45, Yongso-ro, Nam-Gu, Busan, 608-737, Korea 
 

Young-Bong Kim 
Dept. of IT Convergence and Application Engineering 

Pukyong National University, DaeYeon Campus, 45, Yongso-ro, Nam-Gu, Busan, 608-737, Korea 
 
 

ABSTRACT 
 

The mass-spring model has been typically employed in physical-based simulators for clothes or patches. The mass-spring model 
frequently utilizes equal mass and the gravity factor. The model structure of masses supports a shape applicable to fishing nets. 
Therefore, to create a simulation model of a fishing net, we consider the mass-spring model and adopt the tidal-current and buoyancy 
effects in underwater environments. These additional factors lead to a more realistic visualization of fishing-net simulations. In this 
paper, we propose a new mass-spring model for a fishing-net and a method to simplify the calculation equations for a real-time 
simulation of a fishing-net model. Our 3D mass-spring model presents a mesh-structure similar to a typical mass-spring model 
except that each intersection point can have different masses. The motion of each mass is calculated periodically considering 
additional dynamics. To reduce the calculation time, we attempt to simplify the mathematical equations that include the effect of the 
tidal-current and buoyancy. Through this research, we expect to achieve a real-time and realistic simulation for the fishing net. 
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1. INTRODUCTION 
 

 A 3D fishing-net simulation has been used to check the 
efficient spread of a net and also train a fisherman. The 
structure of a fishing-net is very similar with those of general 
mass spring models to show the motion of the cloth or patches. 
This similarity makes a 3D fishing-net simulation use a mass 
spring model [1]-[3], [9]. 

In general fishing-net simulation programs, the calculation 
speed is one of the critical issues for the real-time simulation [4] 
- [8]. There have been developed many researches to get the 
higher calculation speed. Ko proposed the method to reduce the 
integration time [5]. Lee simplified the equations to solve the 
motion of fishing-net using constant term [6]. These previous 
researches basically consider the only gravity factor to simulate 
the motion of mass-spring model. However, the fishing-net has 
to understand the undersea factors such as tidal-current and 
buoyancy to imitate its realistic motion [7], [11]. And also it 
needs to consider the non-uniform mass distribution of a 
fishing-net because a fishing-net can be formed with several 
netting twines with different weights [9] - [12]. These 
additional factors make the simulation system difficult to get 
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the real-time simulation because we have to create the model to 
consider the factors such as the density of fluid, the density of 
objects, the volume of objects, and the vector field of tidal 
current. Therefore, we try to implement a simulation system for 
the fishing-net whose motion also can be affected by the tidal-
current, buoyancy, and the gravity factor [12] - [14]. In order to 
reduce the calculation time, we will simplify some equations to 
determine the motion of a fishing-net. The mass-spring model 
to imitate the motion of the fishing-net will be modified so that 
the mass at each vertex can have a different weight. 

In this paper, we propose a practice system for 3D fishing-
net simulation from general mass-spring background. We may 
obtain an accurate motion of fishing-net using a two-step 
approach: The first step is an Input Data Control based on 
actual fishing-net data with different masses. The second step is 
the Physics Processor which decides the motion of the fishing-
net by a tidal-current factor, a buoyancy factor, and a gravity 
factor in an undersea environment. . 

Our approach has the following advantages. First, we may 
generate a realistic simulation in specific undersea environment. 
This is because Physics Process can generate better results than 
simple gravity. We also increase the calculation speed through 
the simplification of some equations. 
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2. SYSTEM OVERVIEW 
 
Our system consists of four steps as shown in Fig. 1. 

Because our net is suggested in a form with unequal mass, we 
first give an input directly for each mass point in Input Data 
Control step. In this step, the properties of masses or springs 
are also added into a structural fishing-net data. The second 
step, Interactive User Interface, determines the external force 
such as the lift force of tidal-current, the density of objects, the 
volume of objects. It also initializes a position vector of 
fishing-net by user’s mouse control. The third step is the 
Physics Processor which calculates the motion of our fishing-
net model using the environmental characteristics such as tidal-
current and buoyancy. To obtain a real-time motion of fishing-
net model, we will simplify several calculation equations to get 
the motion of our models. 

 

 
Fig. 1. System Overview 

 
The last step, 3D Simulation Manager, shows the natural 

motion on the display monitor using computed values.  
 

 
3. INPUT DATA CONTROL FOR FISHING-NET DATA 

 
Since our fishing-net model considers the various 

environmental effects, this model has to define the various 
types of mass. We will collect the actual data of real fishing-net 
in order to define the mass types for our fishing-net model. 
After the tuning of these actual data, we use the tuning data as 
input data of our fishing-net model. To express the fishing-net 
simulation with unequal masses, we consider the following data 
structure. 
 
Table 1. Input Data of Fishing-Net 

Symbol Definition 
id ID of each mass point(=object) 
x, y, z Position of  x, y, z for each mass point 
volume Volume of each mass point(=object) 
density Density of each mass point(=object) 
mass Mass = volume * density 
surface Projected area 
part_type Type of point(=object) 
link_count Count of link between neighboring points 

link_id[] ID array of links 
l Length of each link 
k Tension of each link 
 

As shown in Table 1, each mass point has its mass 
properties, 3D position, and link attributes implying its 
connectivity structures. Through investigation of actual fishing-
nets, we designed our mass-spring model for fishing-net as 
expressed in Fig. 2. Most of mass points have link connections 
of a diamond shape among its neighboring mass points. 
Periodically, vertical links are added to the link connection of a 
diamond shape. 

A fishing-net model consists of a finite number of mass 
points and its mass points are connected with several spring 
links. As depicted in Fig. 2, each point can have different 
densities, and it divide into three regions. For example, the 
buoys, the sinker, and the general points are located at the top-
line, the bottom line, the middle region, respectively. 

 

 
Fig. 2. Mass-Spring Model of Fishing-Net 

 
 

4. PHYSICS PROCESSOR 
 
4.1 Initialization of Fishing-Net 

In the second process of Fig. 1, the initial fishing-net 
model can be structured by input step come from both actual 
net information of Input Data Control, and a position of 
fishing-net through Interactive User Interface. In general, for 
each mass point, we calculate the initial position using 
mathematical equations. Mass and link connection between 
mass points are chosen among the user-defined basic forms 
which are derived from real fishing-net structures. For special 
masses around the top line and bottom line of a fishing-net, we 
input different masses and properties through the Interactive 
User Interface dialog box. In Interactive User Interface, it is 
possible that we directly move each point after picking vertex.  

A fishing-net has a lot of intersection points which  
correspond to the mass point. If we use all intersection points in 
fishing-net, this simulation system is not possible to get a real-
time fishing-net simulation system. So, we have chosen some 
representative intersection points that is enough to show the 
simulation of fishing-net. The selected points are shown as 
large circle points in Fig. 3. To express the net structure with 
unselected points, we use the texture mapping technique with 
diamond shapes. This texture is given in a checked pattern with 
black color in Fig. 3. 
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Fig. 3. Initial Positions of Mass Points for a Fishing-Net and 

its Textures 
 
4.2 Motion Equation 

The mesh structure in an actual fishing-net should be 
approximated with a small number of mass points to get a rapid 
calculation. We will try to add the environmental forces to a 
fishing-net simulation and then consider the environmental 
forces such as buoyancy and tidal current force. So, at each 
mass point of the fishing-net, its motion equation includes the 
gravity, tidal-current force, and buoyancy as follow:  

 
)F(F)FF(FFF bdbclcdcg(t) +++++=   ………… (1) 

 
where Fg is a gravity force, (Fc+Fcd+Fcl) is a tidal-current 

force, and (Fb+Fbd) is a buoyancy force. Although our method 
will show the mesh-structure similar with the other mass-spring 
model based on gravitation, it also has characteristics of tidal-
current and buoyancy as well as each point can have different 
mass. 

 
4.3 Tidal-Current Equation 

The Tidal-current force is subdivided into Fc, Fcd, Fcl 
forces in the motion equation (1). Fc means the magnitude and 
direction vector of the tidal-current, and Fcd is the drag force 
that the tidal-current affects on the object. Fcd is generally 
calculated as follows: 

 
)))2ν−⋅−×−×= cccd normal(F(N(1ν)normal(FSF (2)  

 
where S is the projected area of the object, ν is the 

velocity of the object, and N is the normal vector of the object. 
Vector ν)(Fc −  is normalized by normal() function. 

Fcl is the lift force that the tidal-current makes the object 
afloat. Fcl can be defined as follows as: 

 

LLcl KVSF ××=  …………………………………… (3) 

 
where S is the projected area of the object, VL is the vector 

of the lift force, KL is the coefficient of the lift force. VL and KL 
are given as follows: 

 
ν))normal(F(Nν)normal(FNV ccL −•×−−=  ……(4) 

where N is the normal vector of the object, ν  is the 
velocity of the object, and Fc is the vector of the tidal-current. 
From equation (4), we obtain the vector of the lift force as VL. 

 
ν)))normal(F2(N(1LK cfuncL −•−= …………………(5) 

 
where KL is a very important factor because it determines 

the scale of lift force. In order to choose the adequate KL value, 
we utilize a lift function Lfunc( ). These values are depended on 
the N, Fc, and ν factors. The N is the normal vector of the 
object, Fc is the vector of the tidal-current, and is the 
velocity of the object.  

In several experimental observations of fishing-net, we 
can obtain the experimental coefficients for Lfunc( ) as given in 
Table 2. 

 
Table 2. Experimental Coefficients of the Lift Force 
No Angle Lift force No Angle Lift force
1 0.00 0.020675 13 51.00 0.504986 
2 5.00 0.029830 14 55.00 0.517126 
3 6.00 0.028353 15 56.00 0.521239 
4 10.00 0.052438 16 60.00 0.496089 
5 11.00 0.049820 17 61.00 0.500870 
6 20.00 0.138550 18 65.00 0.427470 
7 21.00 0.136940 19 66.00 0.435763 
8 30.00 0.265190 20 72.00 0.238003 
9 31.00 0.265750 21 73.00 0.235445 
10 43.00 0.438975 22 85.00 0.088935 
11 44.00 0.441512 23 86.00 0.092204 
12 50.00 0.501985 24 90.00 0.057054 

 
Using data in Table 2, Lfunc( ) can be represented as 

curvature graph as shown in Fig. 4. This graph for the 
coefficients of lift forces is skewed slightly in right direction.  

 

 
Fig. 4. Graph of Lift Function, Lfunc( ) 

 
We can recognize that this coefficient graph is very similar 

with a cosine function. Fig. 5 shows the difference between the 
graph of Lfunc( ) and general cos(). 
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5. EXPERIMENTAL RESULTS 
 

We implemented the 3D fishing-net simulator using 
simplified equations that are described in section 4. We make a 
test the net shape according to the buoyancy force and tidal-
current force. At this time, both ends of the fishing-net are 
always fixed similar with real fishing-nets. Fig. 8(a) shows the 
fishing-net without buoyancy and tidal-current forces. The 
middle point of this net are drooped under the weight of 
fishing-net. The buoyancy mitigates the drooping of fishing-net 
because the mass points get the upward force. Fig. 8(b) 
represents the effects of buoyancy force. Buoys attached along 
the above line of fishing-net cause the different buoyancy force 
between the above line and the bottom line. These differences 
give the good opened shape of a net. It is similar with the shape 
of a net in real world. Fig. 8(c) shows the effects for only tidal-
current force and so the net have moved along the direction of 
tidal-current. Fig. 8(d), 8(e), and 8(f) is net shapes considering 
the buoyancy and tidal-current. The top line of fishing-net is 
floating on the sea while its bottom line goes under by sinker 
attachments. They present the shapes from various camera 
views in the fishing-net simulation employing buoyancy and 
tidal-current force. 

 

 

 
Fig. 8. Simulation Results 

 
From these simulation results, we can observe that our 

simulation system employing buoyancy and tidal-current forces 
is very similar with the real fishing-net.  

 
 

6. CONCLUSION 
 

In this paper, we have developed a 3D fishing-net 
simulation system considering a tidal-current force and 
buoyancy. In order to get a real-time simulation, we have 

chosen the physics model and then simplified the equations to 
describe the physical effects of the tidal-current force and 
buoyancy. This simplification makes the real-time simulation 
possible. In particular, the cosine function for coefficient value 
KL gave very similar visual results and also caused a huge cut-
off in an execution time. In case of buoyancy, we considered 
only the density of fluid because the other factors do not 
provide big differences. Through such simplifications, we 
achieved the real-time simulation and also upgraded the visual 
effects in the 3D simulation of the fishing-net. 
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