• Title/Summary/Keyword: Bulk MOSFET

Search Result 54, Processing Time 0.025 seconds

DC Characteristics of n-MOSFET with $Si_{0.88}Ge_{0.12}$ Heterostructure Channels ($Si_{0.88}Ge_{0.12}$ 이종접합 구조의 채널을 이용한 n-MOSFET의 DC 특성)

  • Choi, Sang-Sik;Yang, Hyun-Duk;Han, Tae-Hyun;Cho, Deok-Ho;Lee, Nae-Eung;Shim, Kyu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.150-151
    • /
    • 2006
  • $Si_{0.88}Ge_{0.12}$/Si heterostructure channels grown by RPCVD were employed to n-type metal oxide semiconductor field effect transistors(MOSFETs), and their electrical properties were investigated. SiGe nMOSFETs presented very high transconductance compared to conventional Si-bulk MOSFETs, regardless substantial drawbacks remaining in subthreshold-slope, $I_{off}$, and leakage current level. It looks worthwhile to utilize excellent transconductance properties into rf applications requesting high speed and amplification capability, although optimization works on both device structure and unit processes are necessary for enhanced isolation and reduced power dissipation.

  • PDF

A Simple and Accurate Parameter Extraction Method for Substrate Modeling of RF MOSFET (간단하고 정확한 RF MOSFET의 기판효과 모델링과 파라미터 추출방법)

  • 심용석;양진모
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2002.11a
    • /
    • pp.363-370
    • /
    • 2002
  • A substrate network model characterizing substrate effect of submicron MOS transistors for RF operation and its parameter extraction with physically meaningful values are presented. The proposed substrate network model includes a single resistance and inductance originated from ring-type substrate contacts around active devices. Model parameters are extracted from S-parameter data measured from common-bulk configured MOS transistors with floating gate and use where needed with out any optimization. The proposed modeling technique has been applied to various-sized MOS transistors. Excellent agreement the measurement data and the simulation results using extracted substrate network model up to 30GHz.

  • PDF

A Simple and Accurate Parameter Extraction Method for Substrate Modeling of RF MOSFET (간단하고 정확한 RF MOSFET의 기판효과 모델링과 파라미터 추출방법)

  • 심용석;양진모
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.11a
    • /
    • pp.363-370
    • /
    • 2002
  • A substrate network model characterizing substrate effect of submicron MOS transistors for RF operation and its parameter extraction with physically meaningful values are presented. The proposed substrate network model includes a single resistance and inductance originated from ring-type substrate contacts around active devices. Model parameters are extracted from S-parameter data measured from common-bulk configured MOS transistors with floating gate and use where needed with out any optimization. The proposed modeling technique has been applied to various-sized MOS transistors. Excellent agreement the measurement data and the simulation results using extracted substrate network model up to 30㎓

  • PDF

High Temperature Dependent SPICE Modeling for Carrier Velocity in MOSFETs Using Measured S-Parameters (S-파라미터 측정을 통한 MOSFET 캐리어 속도의 고온 종속 SPICE 모델링)

  • Jung, Dae-Hyoun;Ko, Bong-Hyuk;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.24-29
    • /
    • 2009
  • In order to model the high temperature dependence of the cutoff frequency $f_T$ in $0.18{\mu}m$ deep n-well isolated bulk NMOSFET, high temperature data of electron velocity of bulk MOSFETs from $30^{\circ}C$ to $250^{\circ}C$ are obtained by an accurate RF extraction method using measured S-parameters. From these data, an improved temperature-dependent electron velocity equation is developed and implemented in a BSIM3v3 SPICE model to eliminate modeling error of a conventional one in the high temperature range. Better agreement with measured $f_T$ data from $30^{\circ}C$ to $250^{\circ}C$ are achieved by using the SPICE model with the improved equation rather than the conventional one, verifying its accuracy of the improved one.

Silicon-Wafer Direct Bonding for Single-Crystal Silicon-on-Insulator Transducers and Circuits (단결정 SOI트랜스듀서 및 회로를 위한 Si직접접합)

  • Chung, Gwiy-Sang;Nakamura, Tetsuro
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.131-145
    • /
    • 1992
  • This paper has been described a process technology for the fabrication of Si-on-insulator(SOI) transducers and circuits. The technology utilizes Si-wafer direct bonding(SDB) and mechanical-chemical(M-C) local polishing to create a SOI structure with a high-qualify, uniformly thin layer of single-crystal Si. The electrical and piezoresistive properties of the resultant thin SOI films have been investigated by SOI MOSFET's and cantilever beams, and confirmed comparable to those of bulk Si. Two kinds of pressure transducers using a SOI structure have been proposed. The shifts in sensitivity and offset voltage of the implemented pressure transducers using interfacial $SiO_{2}$ films as the dielectrical isolation layer of piezoresistors were less than -0.2% and +0.15%, respectively, in the temperature range from $-20^{\circ}C$ to $+350^{\circ}C$. In the case of pressure transducers using interfacial $SiO_{2}$ films as an etch-stop layer during the fabrication of thin Si membranes, the pressure sensitivity variation can be controlled to within a standard deviation of ${\pm}2.3%$ from wafer to wafer. From these results, the developed SDB process and the resultant SOI films will offer significant advantages in the fabrication of integrated microtransducers and circuits.

  • PDF

Fabrication of Superjunction Trench Gate Power MOSFETs Using BSG-Doped Deep Trench of p-Pillar

  • Kim, Sang Gi;Park, Hoon Soo;Na, Kyoung Il;Yoo, Seong Wook;Won, Jongil;Koo, Jin Gun;Chai, Sang Hoon;Park, Hyung-Moo;Yang, Yil Suk;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.632-637
    • /
    • 2013
  • In this paper, we propose a superjunction trench gate MOSFET (SJ TGMOSFET) fabricated through a simple p-pillar forming process using deep trench and boron silicate glass doping process technology to reduce the process complexity. Throughout the various boron doping experiments, as well as the process simulations, we optimize the process conditions related with the p-pillar depth, lateral boron doping concentration, and diffusion temperature. Compared with a conventional TGMOSFET, the potential of the SJ TGMOSFET is more uniformly distributed and widely spread in the bulk region of the n-drift layer due to the trenched p-pillar. The measured breakdown voltage of the SJ TGMOSFET is at least 28% more than that of a conventional device.

A Simple Model for Parasitic Resistances of LDD MOSFETS (LDD MOSFET의 기생저항에 대한 간단한 모형)

  • Lee, Jung-Il;Yoon, Kyung-Sik;Lee, Myoung-Bok;Kang, Kwang-Nham
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.49-54
    • /
    • 1990
  • In this paper, a simple model is presented for the gate-voltage dependence of the parasitic resistance in MOSFETs with the lightly-doped drain (LDD) structure. At the LDD region located under the gate electrode, an accumulation layer is formed due to the gate voltage. The parasitic resistance of the source side LDD in the channel is treated as a parallel combination of the resistance of the accumulation layer and that of the bulk LDD, which is approximated as a spreading resistance from the end of the channel inversion layer to the ${n^+}$/LDD junction boundary. Also the effects of doping gradients at the junction are discussed. As result of the model, the LDD resistance decreases with increasing the gate voltage at the linear regime, and increase quasi-linearly with the gate voltage at the saturation regime, considering th velocity saturation both in the channel and in the LDD region. The results are in good agreement with experimental data reported by others.

  • PDF

Low voltage Low power OTAs using bulk driven in 0.35㎛ CMOS Process (0.35㎛ CMOS 공정에서 벌크 입력을 사용한 저전압 저전력 OTAs)

  • Kang, Seong-Ki;Jung, Min-Kyun;Han, Dae-Deok;Yang, Min-Jae;Yoon, Eun-Jung;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.451-454
    • /
    • 2015
  • This paper introduces 3 type of OTAs with $0.35-{\mu}m$ standard CMOS technology for Low-Power, Low-Voltage. The first type is a two-stage OTA designed to operate with a 1-V VDD and it has $1.774{\mu}W$ low power consumption. All transistors are operating in strong inversion. It takes Gm-Enhancement techniques to compensate gm, which is lowered by Bulk-Driven technique and has an Wide swing current mirror for low voltage operation and a Class-A output. The second type is a Two-stage OTA designed to operate with a 0.8-V VDD and It has 52nW low power consumption and 112dB high gain. The current mirror uses Composite Transistor binding Gates of two MOSFET to raise Rout which is similar with cascode structure. The third type is a Two-stage OTA designed to operate with a 0.6-V VDD and It has 160nW low power consumption and 72dB high gain. It takes Level Shift technique by Common Gate structure to amplify signals without additional bias voltage at second stage.

  • PDF

Investigation of characteristic on Solution-Processed Al-Zn-Sn-O Pseudo Metal-Oxide-Semiconductor Field-Effect-Transistor using microwave annealing

  • Kim, Seung-Tae;Mun, Seong-Wan;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.206.2-206.2
    • /
    • 2015
  • 최근 비정질 산화물 반도체 thin film transistor(TFT)는 차세대 투명 디스플레이로 많은 관심을 받고 있으며 활발한 연구가 진행되고 있다. 산화물 반도체 TFT는 기존의 비정질 실리콘 반도체에 비하여 큰 on/off 전류비, 높은 이동도 그리고 낮은 구동전압으로 인하여 차세대 투명 디스플레이 산업에 적용 가능하다는 장점이 있다. 한편 기존의 sputter나 evaporator를 이용한 증착 방식은 우수한 막의 특성에도 불구하고 많은 시간과 제작비용이 든다는 단점을 가지고 있다. 따라서 본 연구에서는 별도의 고진공 시스템이 필요하지 않을 뿐만 아니라 대면적화에도 유리한 용액공정 방식을 이용하여 박막 트렌지스터를 제작하였으며 thermal 열처리와 microwave 열처리 방식에 따른 전기적 특성을 비교 및 분석하고 각 열처리 방식의 열처리 온도 및 조건을 최적화 하였다. 제작된 박막 트렌지스터는 p-type bulk silicon 위에 산화막이 100 nm 형성된 기판에 spin coater을 이용하여 Al-Zn-Sn-O 박막을 형성하였다. 연속해서 photolithography 공정과 BOE (30:1) 습식 식각 과정을 이용해 활성화 영역을 형성하여 소자를 제작하였다. 제작 된 소자는 Pseudo-MOS FET구조이며, 프로브 탐침을 증착 된 채널층 표면에 직접 접촉시켜 소스와 드레인 역할을 대체하여 동작시킬 수 있어 전기적 특성평가가 용이하다는 장점을 가지고 있다. 그 결과, microwave를 통해 열처리한 소자는 100oC 이하의 낮은 열처리 온도에도 불구하고 furnace를 이용하여 열처리한 소자와 비교하여 subthreshold swing(SS), Ion/off ratio, field-effectmobility 등이 개선되는 것을 확인하였다. 따라서, microwave 열처리 공정은 향후 저온 공정을 요구하는 MOSFET 제작 시의 훌륭한 대안으로 사용 될 것으로 기대된다.

  • PDF

Analysis of $f_T$ and $f_{max}$ Dependence on Unit Finger Width for RF MOSFETs (RF MOSFET의 단위 Finger 폭에 대한 $f_T$$f_{max}$ 종속성 분석)

  • Cha, Ji-Yong;Cha, Jun-Young;Jung, Dae-Hyoun;Lee, Seong-Hearn
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.389-390
    • /
    • 2008
  • The dependence of $f_T$ and $f_{max}$ on the unit finger width is measured and analyzed for $0.13{\mu}m$ MOSFETs. The increase of $f_T$ at narrow width is attributed by the parasitic gate-bulk capacitance, and the decrease of $f_T$ at wide width is generated by the reduction of increasing rate of $g_{mo}$. The increase of $f_{max}$ at narrow width is originated from the abrupt reduction of gate resistance due to the non-quasi-static effect. These analysis results will be valuable information for layout optimization to improve $f_T$ and $f_{max}$.

  • PDF