• Title/Summary/Keyword: Built-in motor

Search Result 260, Processing Time 0.022 seconds

Design and Implementation of Matrix Converter Based on Space Vector Modulation (SVM를 적용한 매트릭스 컨버터의 설계 및 구현)

  • Yang Chun-Suk;Yoon In-Sik;Kim Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.550-559
    • /
    • 2005
  • The matrix converter provides sinusoidal input and output wave forms, bidirectional power flow, controllable input power factor and a long life, compared to the VSI(Voltage Source Inverter) with diode rectification stage at the input. However it has tasks, such as complexity of the control method, ride-through problem and low voltage-ratio limitation, to overcome for commercializing, This paper describes the design, construction and implementation of matrix converter based on space vector modulation technique. The implemented prototype of matrix converter is built using the exclusive IGBT module and control circuit constituted with DSP and CPLD and it has an input filter, overvoltage protection circuit and commutation means for overcoming practical issues. The good results tested using an induction motor are also presented.

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.

Modular Crawler with Adjustable Number of Legs and Performance Evaluation of Hexapod Robot (다리 수 조절이 가능한 모듈러 크롤러의 설계 및 6족 로봇의 주행 성능 평가)

  • Yim, Sojung;Baek, Sang-Min;Lee, Jongeun;Chae, Soo-Hwan;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2019
  • Legged locomotion has high mobility on irregular surfaces by touching the ground at discrete points. Inspired by the creature's legged locomotion, legged robots have been developed to explore unstructured environments. In this paper, we propose a modular crawler that can easily adjust the number of legs for adapting the environment that the robot should move. One module has a pair of legs, so the number of legs can be adjusted by changing the number of modules. All legs are driven by a single driving motor for simple and compact design, so the driving axle of each module is connected by the universal joint. Universal joints between modules enable the body flexion for steering or overcoming higher obstacles. A prototype of crawler with three modules is built and the driving performance and the effect of module lifting on the ability to overcome obstacles are demonstrated by the experiments.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

The Design And Implementation of Robot Training Kit for Java Programming Learning (Java 프로그래밍 학습을 위한 로봇 트레이닝키트의 설계 및 구현)

  • Baek, Jeong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.97-107
    • /
    • 2013
  • The latest programming paradigm has been mostly geared toward object-oriented programming and visual programming based on the object-oriented programming. However, object-oriented programming has a more difficult and complicated concept compared with that of existing structural programming technique; thus it has been very difficult to educate students in the IT-related department. This study designed and implemented a Java robot training kit in which the Java virtual machine is built so that it may enhance the desire and motivation of students for learning the object-oriented programming using the training kit which is possible to attach various input and output devices and to control a robot. The developed Java robot training kit is able to communicate with a computer through the USB interface, and it also enables learners to manufacture a robot for education and to practice applied programming because there is a general purpose input and output port inside the kit, through which diverse input and output devices, DC motor, and servo motor can be operated. Accordingly, facing the IT fusion era, the wall between the academic circles and the major becomes lower and the need for introducing education about creative engineering object-oriented programming language is emerging. At this point, the Java robot training kit developed in this study is expected to make a great commitment in this regard.

Development of the Balance Chair for Improving Postural Control Ability & Pelvic Correction (골반교정 및 자세균형능력 증진을 위한 균형의자 개발)

  • Oh, Seung-Yong;Shin, Sun-Hye;Kang, Seung-Rok;Hong, Chul-Un;Kwon, Tae-Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • The purpose of this study was to develop a balance chair for improving pelvic correction and postural balance through postural balance training using tactile feedback by a vibration motor provided in real time according to the user's attitude. We built a body frame using mono cast(MC) Nylon, Touch thin film transistor(TFT) for user interface, a main control module using Arduino, a 9-axis acceleration sensor for user's posture determination, and a vibration module for tactile feedback. The prototype of the Balance Chair which surrounds the outside was made with cushion for sitting conformability. In order to verify the effectiveness of the postural balance training system using the built prototype, the muscle activity (% MVIC) of the left and right iliocostalis lumborum those are the main muscles of the spinal movement was measured with ten female subjects. And the balance ability before and after training was measured using Spine Balance 3D, a posture balance ability evaluation device. The muscular activities of the left and right iliocostalis lumborum showed the balance activation according to vibration feedback during exercise protocol and postural balance improved after balance exercise training using balance chair. This study could be apply to use the fundamental research for developing the various postural balance product.

Development and Clinical Evaluation of the Upper Extremity Rehabilitation Game Program for Patients with Upper Extremity Hemiplegia After Stroke Using Smartphone: Preliminary Study (스마트폰을 이용한 뇌졸중 후 상지 편마비 환자의 상지 게임재활훈련 프로그램 개발 및 임상적 유용성 평가에 대한 예비연구)

  • Lim, Hyunmi;Choi, Yoon-Hee;Paik, Nam-Jong;Ku, Jeonghun
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.155-161
    • /
    • 2015
  • In the paper, we developed the mobile based rehabilitation system for patients with upper extremity hemiplegia after stroke and evaluated clinical usefulness and effectiveness of the system. The sensors built in the smartphone were used to track patients' upper limb motion and the movements was transferred to the tablet PC through bluetooth connection so that the game contents could be interact with the movements. The rehabilitation game contents was based on Brunnstrom stage(B-stage), and was designed to lead accurate movement of upper limb. For the clinical evaluation of the effectiveness, 11 patients were recruited and make them perform an exercise of their wrist, shoulder, and forearm using the system for two weeks. The change of upper limb motor function was measured using fugl-meyer assessment(FMA), Brunnstrom stage(B-stage). And the change of quality of life was measured using EuroQoL-5 Dimension(EQ-5D), Beck Depression Inventory(BDI). The results showed significant improvement in upper limb function but not in quality of life. We verified mobile based rehabilitation program could be useful and effective for the clinical use.

Active Control of Isolation Table Using $H_\infty$ Control ($H_\infty$ 제어를 이용한 방진대의 능동제어)

  • Kim, Kyu-Young;Yang, Hyun-seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3079-3094
    • /
    • 1996
  • Recently, the high-precision vibration attenuation technology becomes the essence fo the seccessful development of high-integrated and ultra-precision industries, and is expected to continue playing a key role in the enhancement of manufacturing technology. Vibration isolation system using an air-spring is widely employed owing to its excellent isolation characteristics in a wide frequency range. It has, however, some drawbacks such as low-stiffness and low-damping features and can be easily excited by exogenous disturbances, and then vibration of table is remained for a long time. Consequently, the need for active vibration control for an air-spring vibration isolation system becomes inevitable. Furthermore, for an air-spring isolation table to be successfully employed in a variety of manufacturing sites, it should have a guaranteed robust performance not only to exogenous disturbances but also to uncertainties due to various equipments which might be put on the table. In this study, an active vibration suppression control system using H.inf. theory is designed and experiments are performed to verify its robust performance. An air-spring vibration isolation table with voice-coil-motors as its actuators is designed and built. The table is modeled as 3 degree-of-freedom system. An active control system is designed based on $H_\infty$control theory using frequency-shaped weighting functions. Analysis on its performance and frequency responce properties are done through numerical simulations. Robust characteristics of$H_\infty$ control on disturbances and model uncertainties are experimentally verified through (i) the transient response to the impact excitation of the table, (ii) the steady-state response to the harmonic excitation, and (iii) the response to the mass change of the table itself. An LQG controller is also designed and its performance is compared with the $H_\infty$ controller.

Accuracy Simulation Technology for Machine Control Systems (기계장비 제어특성 시뮬레이션 플랫폼 기술)

  • Song, Chang-Kyu;Kim, Byung-Sub;Ro, Seung-Kook;Lee, Sung-Cheul;Min, Byung-Kwon;Jeong, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

Energy Management and Performance Evaluation of Fuel Cell Battery Based Electric Vehicle

  • Khadhraoui, Ahmed;SELMI, Tarek;Cherif, Adnene
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.37-44
    • /
    • 2022
  • Plug-in Hybrid electric vehicles (PHEV) show great potential to reduce gas emission, improve fuel efficiency and offer more driving range flexibility. Moreover, PHEV help to preserve the eco-system, climate changes and reduce the high demand for fossil fuels. To address this; some basic components and energy resources have been used, such as batteries and proton exchange membrane (PEM) fuel cells (FCs). However, the FC remains unsatisfactory in terms of power density and response. In light of the above, an electric storage system (ESS) seems to be a promising solution to resolve this issue, especially when it comes to the transient phase. In addition to the FC, a storage system made-up of an ultra-battery UB is proposed within this paper. The association of the FC and the UB lead to the so-called Fuel Cell Battery Electric Vehicle (FCBEV). The energy consumption model of a FCBEV has been built considering the power losses of the fuel cell, electric motor, the state of charge (SOC) of the battery, and brakes. To do so, the implementing a reinforcement-learning energy management strategy (EMS) has been carried out and the fuel cell efficiency has been optimized while minimizing the hydrogen fuel consummation per 100km. Within this paper the adopted approach over numerous driving cycles of the FCBEV has shown promising results.