• 제목/요약/키워드: Building wind

Search Result 1,149, Processing Time 0.027 seconds

Pile and adjacent ground behaviors depending on horizontal offset between pile and tunnel subjected to horizontally loaded single pile (수평하중을 받는 단일 말뚝 하부 터널굴착 시 말뚝-터널 수평이격거리에 따른 말뚝 및 인접 지반 거동)

  • Ahn, Ho-Yeon;Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.685-703
    • /
    • 2017
  • Recently, as the number of high-rise building and earthquake occurrence are increasing, it is more important to consider horizontal load such as wind and seismic loads, earth pressure, for the pile foundation. Also, development of underground space in urban areas is more demanded to meet various problem induced by growing population. Many studies on pile subjected to horizontal load have been conducted by many researchers. However, research regarding interactive behavior on pile subjected to horizontal load with tunnel are rare, so far. In this study, therefore, study on the behaviors of ground and horizontal and vertical loads applied to single pile was carried out using laboratory model test and numerical analysis. The pile axial force and ground deformation were investigated according to offset between pile and tunnel (0.0D, 1.0D, 2.0D: D = tunnel diameter). At the same time, close range photogrammetry was used to measure displacement of underground due to tunnelling during laboratory model test. The results from numerical analysis were compared to that from laboratory model test.

Overstrength and Response Modification Factor in Low Seismicity Regions (약진지역에서의 초과강도 및 반응수정계수)

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun;Kim, Tae-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.57-64
    • /
    • 2006
  • Seismic design codes are mainly based on the research results for the inelastic response of structures in high seismicity regions. Since wind loads and gravity loads may govern the design in low seismicity regions in many cases, structures subjected to design seismic loads will have larger overstrength compared to those of high seismicity regions. Therefore, it is necessary to verify if the response modification factor based on high seismicity would be adequate for the design of structures in low seismicity regions. In this study, the adequacy of the response modification factor was verified based on the ductility and overstrength of building structures estimated from the result of nonlinear static analysis. Framed structures are designed for the seismic zones 1, 2A, 4 in UBC-97 representing the low, moderated and high seismicity regions and the overstrength factors and ductility demands of the example structures are investigated. When the same response modification factor was used in the design, inelastic response of structures in low seismicity regions turned out to be much smaller than that in high seismicity regions because of the larger overstrength of structures in low seismicity regions. Demands of plastic rotation in connections and ductility in members were much lower in the low seismicity regions compared to those of the high seismicity regions when the structures are designed with the same response modification factor.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

A Study on the Development of 3D Virtual Reality Campus Tour System for the Adaptation of University Life to Freshmen in Non-face-to-face Situation - Autonomous Operation of Campus Surrounding Environment and University Information Guide Screen Design Using Visual Focus Movement - (비대면 상황에서 신입생 대학생활적응을 위한 3차원 가상현실 캠퍼스 투어시스템 개발연구 - 시야초점의 움직임을 활용한 캠퍼스주변 환경의 자유로운 이동과 대학정보안내화면 GUI설계 -)

  • Lim, Jang-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.3
    • /
    • pp.59-75
    • /
    • 2021
  • This study aims to establish a foundation for autonomous driving on campus and communication of abundant university information in the HCI environment in a VR environment where college freshmen can freely travel around campus facilities. The purpose of this study is to develop a three-dimensional VR-style campus tour system to establish a media environment to provide abundant university information guidance services to freshmen in non-face-to-face situations. This study designed a three-dimensional virtual reality campus tour system to solve the problem of discontinuity in which VR360 filming space does not lead to space like reality, and to solve many problems of expertise in VR technology by constructing an integrated production environment of tour system. We aim to solve the problem of inefficiency, which requires a large amount of momentum in virtual space, by constructing a GUI that utilizes the motion of the field of view focus. The campus environment was designed as a three-dimensional virtual reality using a three-dimensional graphic design. In non-face-to-face situations, college freshmen freely transformed the HMD VR device, smartphone, FPS operation mode of the gyroscope sensor. The design elements of the three-dimensional virtual reality campus tour system were classified as ①Visualization of factual experiences, ②Continuity of space movement, ③Operation, automatic operation mode, ④Natural landscape animation, ⑤Animation according to wind direction, ⑥Actual space movement mode, ⑦Informatization of spatial understanding, ⑧GUI by experience environment, ⑨Text GUI by building, ⑩VR360, 3D360 Studio Environment, ⑪Three-dimensional virtual space coupling block module, ⑫3D360-3D Virtual Space Transmedia Zone, ⑬Transformable GUI(VR Device Dual Viewer-Gyro Sensor Full Viewer-FPS Operation Viewer) and an integrated production environment was established with each element. It is launched online (http://vautu.com/u1) by constructing a GUI for free driving mode and college information screens to adapt to college life for freshmen, and designing an environment that can be used simultaneously by current media such as PCs, Android, and iPads. Therefore, it conducted user research, held a development presentation, a forum on excellence in university innovation support projects, and applied it as a system on the website of a particular university. College freshmen will be able to experience university information directly from the web and app to the virtual reality campus environment.

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

Properties on the Airborne Chlorides of Offshore Bridges on the Western/Southern Coast in South Korea (국내 서/남해안 해상교량의 월별, 높이별 비래염분량 특성)

  • Jung, Jahe;Min, Jiyoung;Lee, Binna;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.59-67
    • /
    • 2022
  • In this study, the monthly airborne chlorides flying into the offshore bridges were investigated depending on the sea level. The target structures were 9 bridges located on the western and southern coast of South Korea. The airborne chlorides were measured at different sea levels on each bridge every month during 1 year. The results showed that the strongest seasonal wind from the northwest in winter expecially have led increase of the airborne chlorides, and its effect was more significant in the western coast than the southern coast. It was also found that the airborne chlorides declined with the increase of sea level. Three types of curves were suggested for analyzing the decrease trend with the sea level, based on the airborne chlorides at the lowest measurement height of main tower. The trend was varied depending on the sea area, and even in the same sea area, the local topographic condition affected the airborne chlorides. It means that the location and local topography should be considered simultaneously for durability management in the framework of the chloride source, and then the influence of the chloride source should be classified, e.g. safe and dangerous. From these results, it is expected that it could be used as baseline data for the evaluation of the deterioration environment in the Detailed guidelines for safety and maintenance of facilities [Performance evaluation]_Bridge.

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

On Building the Solar Dataset Form using the Kaggle Platform: The applicability of Machine Learning (캐글 플랫폼 활용한 태양광 데이터셋 형태 구축: 머신 러닝의 적용 가능성)

  • Ko, Ju-won;Park, Jung-jin;Park, Jin-woo;Oh, Do-hee;Kim, Mincheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.255-258
    • /
    • 2022
  • As environmental pollution continues, attention on renewable energy is on the constant rise in recent days. Although various kinds of renewable energy such as solar, wind power and biomass energy have been generated in Jeju, opening and analyzing cases on related data seem insufficient. Therefore, this study is being conducted to deduce the variables which have high relation with solar panel&s output and to understand machine learning methods that can be applied to solar power generation data by utilizing Kaggle platform, which is actively used by a number of scientists. Then, it is planned to propose a form of solar power generation dataset by researching machine learning methods that could be applied to the data. To be specific, analyzing solar power generation data with the Kaggle platform, this study will provide complements on gathering solar power data in Jeju. This study is anticipated to be utilized on data analysis for developing the solar power industry in Jeju. That is, this study is expected to reveal the room for improvement inherent in existing open datasets in Jeju, so that they could be constructed in a suitable form for machine learning for AI analytics. Through this process, a method to increase efficiency of solar power generation is anticipated to be prepared.

  • PDF

Estimation of Reduction Rate of Airborne Chlorides base on Coastal Distance and Facilities in Incheon Port, South Korea (인천항의 대기 중 비래염분량의 시설물별 특성 및 해안거리에 따른 감소량 추정)

  • Jahe Jung;Jong-Suk Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.13-21
    • /
    • 2023
  • In this study, the coastal airborne chlorides were investigated in the Incheon Port, South Korea. Monthly measurements of coastal airborne chlorides were taken for a total of 2 years from September 2021 to August 2023 at 15 locations in North, South, and New Port. We analyzed the distribution characteristics of airborne chloride based on port facilities and measurement environments, as well as the reduction characteristics of the airborne chloride with respect to coastal distance. As a result, the monthly distribution range of the airborne chloride in the North, South, and New Port varied similarly, ranging from 0.4 to 3.3 mdd. Due to the influence of seasonal winds considering the direction of the coastline, both the North Port and South Port had higher the airborne chloride in winter, while the New Port had higher content in summer. The airborne chlorides were higher at locations inside an inland sea compared to those outside an inland sea. This is because the wind coming from the sea passed through the inland sea. Even in the same region with identical coastal distances, there were variations in airborne chloride levels depending on the height above the ground. In tidal zone, the monthly airborne chlorides were significantly higher in the lower part than in the upper part. The rate of decrease equation of airborne chlorides for each port based on the distance from the coastline was derived, and the results showed that as the distance from the coastline increased, the rate of decrease in airborne chlorides was the highest for New Port and the lowest for South Port.

Analysis of Thermal Environment Modification Effects of Street Trees Depending on Planting Types and Street Directions in Summertime Using ENVI-Met Simulation (ENVI-Met 시뮬레이션을 통한 도로 방향별 가로수 식재 형태에 따른 여름철 열환경 개선 효과 분석)

  • Lim, Hyeonwoo;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.1-22
    • /
    • 2022
  • The modification effects of street trees on outdoor thermal comfort in summertime according to tree planting types and road direction were analyzed using a computer simulation program, ENVI-met. With trees, the air temperature and wind speed decreased, and the relative humidity increased. In the case of mean radiant temperature (Tmrt) and human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI), there was a decrease during the daytime. The greatest change among the meteorological factors by trees happened in Tmrt, and PET and UTCI showed similar patterns with Tmrt·The most effective tree planting type on thermal comfort modification was low tree height, wide tree crown, high leaf area index, and narrow planting interval (LWDN). Tmrt, PET and UTCI showed a large difference depending on shadow patterns of buildings and trees according to solar altitude and azimuth angles, and building locations. When the building shade areas increased, the thermal modification effect by trees decreased. In particular, results on the east and west sidewalks showed a large deviation over time. When applying the LWDN, the northwest, west and southwest sidewalks showed a significant reduction of 8.6-12.3℃ PET and 4.2-4.5℃ UTCI at 10:00, and the northeast, east and southeast sidewalks showed 8.1-11.8℃ PET and 4.4-5.0℃ UTCI at 16:00. On the other hand, when the least effective type (high tree height, narrow tree crown, low leaf area index, and wide planting interval) was applied, the maximum reduction was up to 1.8℃ PET and 0.9℃ UTCI on the eastern sidewalks, and up to 3.0℃ PET and 0.9℃ UTCI on the western ones. In addition, the difference in modification effects on Tmrt, PET and UTCI between the tree planting types was not significant when the tree effects were reduced by the effects of buildings. These results can be used as basic data to make the most appropriate street tree planting model for thermal comfort improvement in urban areas in summer.