DOI QR코드

DOI QR Code

Estimation of Reduction Rate of Airborne Chlorides base on Coastal Distance and Facilities in Incheon Port, South Korea

인천항의 대기 중 비래염분량의 시설물별 특성 및 해안거리에 따른 감소량 추정

  • 정자혜 (한국건설기술연구원 지반연구본부) ;
  • 이종석 (한국건설기술연구원 구조연구본부)
  • Received : 2023.10.16
  • Accepted : 2023.10.30
  • Published : 2023.12.31

Abstract

In this study, the coastal airborne chlorides were investigated in the Incheon Port, South Korea. Monthly measurements of coastal airborne chlorides were taken for a total of 2 years from September 2021 to August 2023 at 15 locations in North, South, and New Port. We analyzed the distribution characteristics of airborne chloride based on port facilities and measurement environments, as well as the reduction characteristics of the airborne chloride with respect to coastal distance. As a result, the monthly distribution range of the airborne chloride in the North, South, and New Port varied similarly, ranging from 0.4 to 3.3 mdd. Due to the influence of seasonal winds considering the direction of the coastline, both the North Port and South Port had higher the airborne chloride in winter, while the New Port had higher content in summer. The airborne chlorides were higher at locations inside an inland sea compared to those outside an inland sea. This is because the wind coming from the sea passed through the inland sea. Even in the same region with identical coastal distances, there were variations in airborne chloride levels depending on the height above the ground. In tidal zone, the monthly airborne chlorides were significantly higher in the lower part than in the upper part. The rate of decrease equation of airborne chlorides for each port based on the distance from the coastline was derived, and the results showed that as the distance from the coastline increased, the rate of decrease in airborne chlorides was the highest for New Port and the lowest for South Port.

본 연구에서는 인천항만 시설물의 대기 중 비래염분량을 조사하였다. 2021.9 ~ 2023.8월, 총 2년 동안 북항, 남항, 신항에 총 15개의 염분포집기를 설치하여 대기 중 비래염분량을 측정하고, 항만시설물과 측정환경에 따른 비래염분량의 분포 특징과, 해안거리에 따른 비래염분량의 감소 특성을 분석하였다. 그 결과, 북항, 남항, 신항의 월별 비래염분량 분포는 0.4 ~ 3.3 mdd로 유사하게 나타났으며, 해안선의 방향을 고려한 계절풍의 영향으로 북항과 남항은 겨울에, 신항은 여름에 비래염분량이 높게 나타났다. 측정환경에 따른 비래염분량의 특징으로는 동일 지역에서 내해보다 내륙에 위치하여 바다에서 부는 바람이 내해를 통과하여 지나가는 위치에 있는 지점에서 비래염분량이 높게 나타났다. 또한 동일지역에서 해안거리가 동일한 두 지점일지라도 지면으로부터 높이에 따라서 비래염분량에 차이가 있었다. 한편 간만대의 경우, 월별 비래염분량은 상부보다는 하부에서 현저히 높게 나타났으며, 예외적으로 상부의 비래염분량이 하부만큼 높은 기간은 최고조위와 조위차가 높은 특징이 있었다. 해안으로부터 거리에 따른 항별 비래염분량의 감소율식을 도출하였으며, 그 결과, 해안으로부터 멀어질수록 비래염분량의 감소율은 신항이 가장 크고, 남항이 가장 작게 나타났다.

Keywords

Acknowledgement

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210603, 항만인프라 재해 및 노후화 관리기술 개발).

References

  1. Alcantara, J., Chico, B., Daiz, I., Fuente, D., and Morcillo, M. (2015), Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel, Corrosion Science, 97(2015), 74-88. https://doi.org/10.1016/j.corsci.2015.04.015
  2. Hirose, N., Takebe, M., Ohya, M., and Sato, M. (2014), Estimation of salt adhesion on the steel surface in developing the evaluation method of corrosion environment, Journal of the Structural Engineering, 60A, 605-612 (in Japanese).
  3. Jung, J., Min, J., Lee, B., and Lee, J. S. (2022), Properties on the Airborne Chlorides of Offshore Bridges on the Western/Southern Coast in South Korea, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(2), 59-67, https://doi.org/10.11112/jksmi.2022.26.2.59 (in Korean).
  4. Jung, J., and Lee, J. S. (2023), Seasonal Variation of Airborne Chlorides in coast by sea area and region, South Korea, KSCE Journal of Civil and Environmental Engineering Research, 43(5), 611-619, https://doi.org/10.12652/Ksce.2023.43.5.0611 (in Korean).
  5. Kazama, H., and Yamada, Y. (2004), "Advection-Diffusion Analysis of Air Borne Chloride-ions", Proceedings of the Japan Concrete Institute, 26(1), 795-800.
  6. Korea Hydrographic and Oceanographic Agency (KHOA) (2023), Ocean Data in Grid Framework, Available at: http://www.khoa.go.kr/oceangrid/koofs/kor/observation/obs_real.do (Accessed: Sep 20, 2023).
  7. Korea Institute of Civil Engineering and Building Technology (KICT) (2006), Long Term Measurement of Airborne Chlorides and Durability of Concrete Mixed with Sea Sand (in Korean).
  8. Korean Society of Steel Construction (2019), Guidelines for the use of Uncoated Weathering Steel in Bridges (in Korean).
  9. Lee, J. S., and An, G. H. (2012), Penetration Properties of Airborne Chlorides on Concrete Exposed in Marine Environment, Journal of the Korea Concrete Institute, 24(5), 553-558. https://doi.org/10.4334/JKCI.2012.24.5.553
  10. Lee, J. S., Ahn, K. H., Kim, D. G., and Park, J. J. (2010), Distribution Properties of Airborne Chlorides in Korea, Journal of the Korea Concrete Institute, 22(6), 769-776. https://doi.org/10.4334/JKCI.2010.22.6.769
  11. Meira, G. R., Andrade, C., Alonso, C., Borba Jr, J. C., and Padilha Jr, M. (2010), Durability of Concrete Structures in Marine Atmosphere Zones-The Use of Chloride Deposition Rate on the Wet Candle as an Environmental Indicator, Cement and Concrete Composites, 32(6), 427-435. https://doi.org/10.1016/j.cemconcomp.2010.03.002
  12. Min, J., and Lee, J. S. (2021), Correlation Analysis between Airborne and Penetrated Chlorides into Concrete on the West Coast of Korea, Journal of the Korea Concrete Institute, 3(1), 3-9. https://doi.org/10.4334/JKCI.2021.33.1.003
  13. Ministry of Land, Infrastructure and Transport (MOLIT) (2021), Detailed Guidelines for Safety and Maintenance of Facilities (Performance Evaluation) (in Korean).
  14. Ministry of Land, Infrastructure and Transport (MOLIT) (2022), Durability Design Criteria for Concrete Structures (in Korean).
  15. Ministry of Oceans and Fisheries (MOF) (2023), Korea Design Standard for Port and Harbour Facilities (KDS 64 10 20) (in Korean).
  16. Moon, H. Y., and Lee, J. S. (2004), A Study on Performance of Devices for Measuring the Sea-Salt Flying to the Concrete Structures in the Seashore, KSCE Journal of Civil and Environmental Engineering Research, 24(2A), 417-422.
  17. Public Works Research Institute (PWRI) (1993), Nation-wide Investigation on Air-borne Chloride(4)-Relationship between Geographical Distribution of Air-borne Chloride and Wind- (4), Tsukuba, Japan (in Japanese).
  18. Saeki, T., Takeda, M., Sasaki, K., and Shima, T. (2010), Study on Quantitative of Aerosol Chlorides Condition, Japanese Journal of JSCE, 60(1), 1-20 (in Japanese). https://doi.org/10.2208/jsceje.66.1
  19. Seechurn, Y., Surnam, B. Y. R., and Wharton, J. A. (2022), Marine atmospheric corrosion of carbon steel in the tropical microclimate of Port Louis, Materials and Corrosion, 73(9), 1339-1524. https://doi.org/10.1002/maco.202270091
  20. Tsubokura, Y., Hirose, N., Takebe, M., and Ohya, M. (2016), Estimation of adhered salinity ratio on the steel surface based on measuring atmospheric salinity concentration in San-in region, Journal of the Structural Engineering, 62A, 549-558 (in Japanese).