DOI QR코드

DOI QR Code

Properties on the Airborne Chlorides of Offshore Bridges on the Western/Southern Coast in South Korea

국내 서/남해안 해상교량의 월별, 높이별 비래염분량 특성

  • 정자혜 (한국건설기술연구원 지반연구본부) ;
  • 민지영 (한국건설기술연구원 구조연구본부) ;
  • 이빛나 (한국건설기술연구원 구조연구본부) ;
  • 이종석 (한국건설기술연구원 구조연구본부)
  • Received : 2022.03.14
  • Accepted : 2022.04.26
  • Published : 2022.04.30

Abstract

In this study, the monthly airborne chlorides flying into the offshore bridges were investigated depending on the sea level. The target structures were 9 bridges located on the western and southern coast of South Korea. The airborne chlorides were measured at different sea levels on each bridge every month during 1 year. The results showed that the strongest seasonal wind from the northwest in winter expecially have led increase of the airborne chlorides, and its effect was more significant in the western coast than the southern coast. It was also found that the airborne chlorides declined with the increase of sea level. Three types of curves were suggested for analyzing the decrease trend with the sea level, based on the airborne chlorides at the lowest measurement height of main tower. The trend was varied depending on the sea area, and even in the same sea area, the local topographic condition affected the airborne chlorides. It means that the location and local topography should be considered simultaneously for durability management in the framework of the chloride source, and then the influence of the chloride source should be classified, e.g. safe and dangerous. From these results, it is expected that it could be used as baseline data for the evaluation of the deterioration environment in the Detailed guidelines for safety and maintenance of facilities [Performance evaluation]_Bridge.

본 연구에서는 해상교량에서 해수와 직접 접하지 않은 부재로 날아 들어오는 비래염분 분포를 월별, 높이별로 파악하였다. 이를 위하여 한국의 남해안과 서해안의 9개 해상교량을 대상으로 다양한 높이에서 1년 동안 비래염분량을 측정하여 분석하였다. 그 결과, 측정한 월에 따라서는 서해안과 남해안 모두 겨울철 북서 계절풍의 풍향과 강한 풍속의 영향으로 겨울철(11월~2월)의 비래염분량이 크게 증가하였고 그 차이는 서해안이 더 크게 나타났다. 높이별로는 해수면에서 높아질수록 비래염분량이 감소하는 경향을 나타내었으며, 감소 경향에 따라 주탑하단의 비래염분량을 기준으로 총 3개의 구간으로 분류하여 비래염분량 감소식을 도출하였다. 각 구간에 따른 감소 경향 차이는 해역별로, 동일 해역내에서도 국부적인 지형적 특징에 따라 다르게 나타났다. 따라서 해상교량의 유지관리를 위한 비래염분자료 수립을 위해서는 해역별 특징과 함께, 그 주변의 국부적인 지형적 특징도 고려하여야 할 것으로 판단된다. 본 연구의 결과로서, 해상 교량의 비래염분 염해환경에 대하여 안전한 구간과 열악한 구간을 구분할 수 있을 것으로 판단되며, 시설물 안전 및 유지관리 실시 세부지침[성능평가]_교량편의 열화환경 평가항목의 기반자료로 활용될 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220217-001, DNA 기반 노후 교량 구조물 스마트 유지관리 플랫폼 및 활용기술개발).

References

  1. Korea Institute of Civil Engineering and Building Technology (KICT) (2006), Long Term Measurement of Airborne Chlorides and Durability of Concrete Mixed with Sea Sand, 1-134.
  2. Korea Meteorological Administration (KMA) (2018), Analysis Report of Typhoon Affecting the Korean Peninsula in 2017, Sejong, 1-54.
  3. Lee, J. S., Ahn, K. H., Kim, D. G., and Park, J. J. (2010), Distribution Properties of Airborne Chlorides in Korea, Journal of the Korea Concrete Institute, 22(6), 769-776. https://doi.org/10.4334/JKCI.2010.22.6.769
  4. Lee, J. S., and An, G. H. (2012) Penetration Properties of Airborne Chlorides on Concrete Exposed in Marine Environment. Journal of the Korea Concrete Institute, 24(5), 553-558. https://doi.org/10.4334/JKCI.2012.24.5.553
  5. Meira, G. R., Andrade, C., Alonso, C., Borba Jr., J. C., and Padilha Jr., M. (2010), Durability of Concrete Structures in Marine Atmosphere Zones-The Use of Chloride Deposition Rate on the Wet Candle as an Environmental Indicator, Cement and Concrete Composites, 32(6), 427-435. https://doi.org/10.1016/j.cemconcomp.2010.03.002
  6. Min, J., and Lee, J. S. (2021), Correlation Analysis between Airborne and Penetrated Chlorides into Concrete on the West Coast of Korea, Journal of the Korea Concrete Institute, 3(1), 3-9.
  7. Ministry of Land, Infrastructure and Transport (MOLIT) (2021), Detailed Guidelines for Safety and Maintenance of Facilities (Performance Evaluation), Sejong, 1-150.
  8. National Institute for Land and Infrastructure Management (NILIM) (2009), Research on highway bridges management - Bridge Management System (BMS) -, Technical note of National Institute for Land and Infrastructure Management, NILIM, No.523, 1-75.
  9. Public Works Research Institute (PWRI) (1993), Nation-wide Investigation on Air-borne Chloride(4)-Relationship between Geographical Distribution of Air-borne Chloride and Wind-,PWRI, Tsukuba, 1-50.
  10. Sakihara, K., Higa, K., and Yamada, Y. (2014), Basic Study on Estimation of Airborne Chlorides Transportation in the Main Island of Okinawa, Japan Concrete Journal, Japan Concrete, Institute, 36(1), 970-975.
  11. Sasaki, I., Sakuraba, H., and NiShizaki, I. (2016), Airborne Chlorides Distribution of Offshore structures, Proceedings of 71st JSCE Symposium, Japan Society of Civil Engineers, Japan Society of Civil Engineers, Sendai, 781-782.
  12. Uda, T., Omata, A., and Konishi, M. (1992), Computational Model of Airborne Chlorides from Seashore, Journal of Japan Society of Civil Engineers, Ser. Be(Coastal Engineering), Japan Society of Civil Engineers, 39, 1051-1055.
  13. Yamada, Y., Oshiro, T., and Masuda, Y. (1998), Analytical Study on Air Born Chloride-ions near Coastal Area, Journal of Structural and Construction Engineering, Architectural institute of Japan, 514, 21-26. https://doi.org/10.3130/aijs.63.21_3