• Title/Summary/Keyword: Building Lighting

Search Result 310, Processing Time 0.022 seconds

A Study on Lighting Energy Prediction by Using Daylight during Daytime (자연채광 이용에 따른 조명에너지 예측방법에 관한 연구)

  • Chung, Yu-Gun;Kim, Jeong-Tai
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.9-19
    • /
    • 1991
  • Lighting is one of the largest energy consumption in commercial building. For saving such lighting energy, integrated lighting system with daylight and artificial lighting has been suggested. In such system, perimeter zone can be illuminated by daylighting and the deep area of room by artificial lighting. So, the study aimed to develope of lighting energy prediction nomograph by turnning-off depth and lighting control systems during daytime. For the purpose, energy nomo-graph has been developed to apply to side-lit office building and the use and limitation of the nomograph has been discussed.

  • PDF

A Study on the Lighting Energy Performance Analysis of a Shading Device based on Visual Comfort (시각적 쾌적성을 고려한 차양장치의 조명에너지 성능 분석 방법에 관한 연구)

  • Oh, Min-Seok;Lee, Ju-Yoon;Kim, Gi-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.1-14
    • /
    • 2018
  • The shading device on the window of the building can be an passive solution to reduce the cooling load and lighting energy, as well as improving the indoor comfort. It is also an architectural element that must be considered for building energy-efficient buildings such as eco-buildings and zero-energy buildings. However, due to various building environments and various shading devices, the installation of excessive shade may lead to the risk of losing the effectiveness of windows. In this study, we propose a method for optimal automatic control of shading device and evaluate its effectiveness by energy analysis of several shading devices.

a Survey on the Actual Condition of Lighting Apparatus (일반용 및 산업용 조명기구 보급실태조사)

  • 곽희로;이진우;김문덕;강원구
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 1995
  • In this paper, we investigate the numbers and electrical capacities of general and industrial Korean lighting apparatus. The results show that the number of lighting apparatus are 68,211,000 in general and 53,836,000 in industrial building and the capacities of lighting apparatus are 3,261,609 kW in general and 4,278,683 kW in industrial building. The ratio of Lighting apparatus is that fluorescent lamps are 56.9%, high intensity discharge lamps are 29.7%, and incandescent lamps are 12.1%.

  • PDF

Analysis and Comparison on the Architectural Lighting of office buildings in Hongkong, Shanghai and Seoul (홍콩, 상해, 서울의 사무소 건축물 경관조명 비교 분석)

  • Jung, Yeon-Hong;Lim, Ji-Sun;Kim, Hyun-Sun;Kim, Yu-Sin;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.24-27
    • /
    • 2009
  • Architectural lighting is an important factor to inform brand image to public for a headquarter building at night The government encourages to clients to apply architectural lighting to their buildings for the nightscape. In these days, variable lightings and lighting designs are applied to a building in the world. Therefore, the purpose of this study is to analyze and compare architectural lighting design on the various office buildings in Hongkong, Shanghai and Seoul with measured luminance and photographic images at night-time.

  • PDF

Comparative Studies on Lighting Environment and Energy Performance depending on the Transmittance of Window and Slat Angle of Blind (창호의 투과율과 블라인드 슬랫각도에 따른 빛환경 및 에너지성능 비교 연구)

  • Sim, Se-Ra;Yoon, Jong-Ho;Shin, U-Cheul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.256-263
    • /
    • 2011
  • Recently, curtain wall structure is constructed according to increasing high rise building. Glass is usually used in opening of curtain wall structure and window area ratio is finally increased. Excessive Daylighting and solar radiation by large window area ratio cause discomfort glare and add to cooling load in the case of office that is heavy on lighting and cooling. Therefore, this study suggests to use low transmittance window for solve those problems. Indoor lighting environment and building energy performance were analyzed by increasing transmittance from 10% to 90% and comparing fixed venetian blind. Consequently, the range of transmittance that is possible to daylighting and prevent discomfort glare. Secondary energy consumption is efficient in the case that transmittance is the range of from 20% to 50%, primary energy consumption is nice on from 20% to 40%. If those result put together, the range of window transmittance from 30% to 50% is proper in the office in lighting environment and energy consumption aspects.

  • PDF

Decision of Lighting Power Density for Office Building Lighting (사무용 빌딩의 조명전력 허용기준 연구)

  • Lee, Sang-Jin;Lee, Min-Wook;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • To identify energy savings when comparing lighting designs or evaluating installed lighting, it is necessary to analyze the consumption of lighting power with respect to the electricity consumed and the lighting area. In Korea, however, these factors have not been considered in lighting design. In this paper, the lighting power-related standards on indoor lighting in foreign countries have been analyzed. It is determine appropriate lighting power consumption for indoor by calculating the energy consumption has been estimated in a lighting design adopted domestic luminaire used.

A Study on Savings Analysis of Light Dimming Control System Using the Daylight based on Photovoltaic Power Generation (태양광발전 기반의 주광을 활용한 조명제어 시스템의 에너지 절감량 분석 연구)

  • Ham, Won-Tae;Jang, Cheol-Yong;Jeong, Hak-Guen
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.11-21
    • /
    • 2012
  • In the normal office building, the energy consumption to maintain the reasonable intensity of illumination for the work by using the artificial illumination occupies 30% or greater of the whole building electric energy consumption. If the dependability of the artificial illumination is dropt by positively using the natural lighting from the outside, the large amount of electrical energy can be saved, in addition the more nice visual environment for work can be created. Daylight is lighting source that most closely match visual response of the human, because sunlight and skylight achieve the harmony. For this reason, the daylight of small amount than amount of the artificial lighting source also can give the same effect in work activities of human. In addition, if there is daylight at the window of the building, the energy can be saved by controlling the artificial lighting. In this paper, in the building using the photovoltaic power generation analyze the correlation between the amount of energy generated by photovoltaic and indoor illumination and this was proved through the simulation with Relux 2010. In addition, the amount of daylight inflow in the room and distribution was drawn by the equation and the ratio for the sectional dimming control of each lighting equipment was predicted and the energy saving amount according to this was calculated. As a result, the indoor illumination was satisfied with recommended illumination value of the office and consumption power could be reduced approximately with 20~70%.

A study on lighting Diffusion system of Daylight Duct System (광덕트방식 자연채광 시스템의 산광부에 대한 연구)

  • Song, Kyu-Ryol;Park, Gyeong-Woo;Ryu, Han-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.99-104
    • /
    • 2011
  • Daylighting system is an alternative to the energy crisis and environment change. And it is possible improvement system of Architectural Space Environment. Accordingly, it is very useful system. Because Daylight Duct System of Daylighting System gives high performance for its price, distribution rate is very high. But Daylighting Duct System is hard to accurate control. Accordingly, it is difficult to maintain continuously Daylight Environment in Interior Spaces. Lighting Diffusion System has been developed that it is Applying the principle of Reflector and prism diffuser for maximize the efficiency of lighting of Daylight Duct Systems through this study. And then compare lighting performance of Existing System and new Lighting Diffusion System through producing a mock-up. Thus, this study was carried out for the purpose of verification for excellence. It is that installed Each Daylighting Duct System for performance evaluation in a laboratory of width 4m, length 10m, height 2.5m. And illuminance was measured at noon on winter solstice(December 22) under clean sky. The actual measurement result was in the following. Newly developed lighting Diffusion system was measured maximum illuminance 399, minimum illuminance 221, average illuminance 141. Synthetically, daylight factor, uniformity factor and illuminance distribution were improved more than existing system. As a result, it was confirmed that was improved lighting Environment in Interior Spaces.

  • PDF

A study on Daylighting inducement within bedroom of Elderly care facility by light shelf attaching method for Therapeutic environment - By Dynamic Daylight Simulation Using Weather Data - (치유환경을 위한 광선반 부착방법에 따른 노인요양시설 침실 내 자연채광 유입 환경 연구 - 기상데이터 기반 동적 자연채광 시뮬레이션을 기반으로 -)

  • Cho, Ju-Young;Lee, Ki-Ho;Yun, Young-Il;Lee, Hyo-Won
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.71-79
    • /
    • 2011
  • There are high recognitions on the importance of comforts in Elderly living environment, but the circumstance is that studies on seniors facility space itself are approached only in planning level, and studies on lighting environment which is significantly associated with the comfort in the indoor environment of seniors where they actually spend the majority of their time are not that active. This study was intended to deduce cozy bedroom environment to which existing elderly care facility can be improved by using light shelf the lighting system with the advantage of being able to serve both as building sun visor and lighting window simultaneously in order to analyze the interior environment of bedroom space of elderly care facility the indoor space where the aged spend the majority of their life and examine the directions for the improvement of existing building lighting system through remodeling and renovation. In this study, lighting performance analysis was done in a way that the windows of the bedroom unit in existing facility were set in southbound direction based on two standard types and were put under initial simulation with the use of Autodesk Revit 2011, and after the simulation results were converted to Green Building Studio gbXML file to be used in ECOTECT, Daylight Autonomy a dynamic simulation and static natural lighting simulation the existing method of calculating daylight factors were deduced through Ecotect Analysis 2011. In conclusion, exiting standard model was found in such a condition that the daylight factors for both type A and type B were above 5% the proper standard value, and required improvement. In case light shelf the natural lighting system was attached, the daylight factor was improved to proper standard value for type A, and also was improved above existing facility for type B.

Evaluation of Lighting Energy Saving Rate in a Small Office Space (소규모 사무공간의 조명에너지 절감율 평가에 관한 연구)

  • Kim, Han-Yong;Yun, Gyeong;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.50-58
    • /
    • 2012
  • The objective of this study is to evaluate the lighting dimming rates with various parameters of the building skin in a small office. We compared to simulated workplane illuminance and measured workplane illuminance for the base model. After that, the five veriables(the presence of vertical wall in double skin facade, the presence of windowsill, window to wall ratio(WWR), window visible transmittance, the width of double skin facade) were applied to base model, and we analyzed the simulated lighting energy saving rates. The results are listed as below. The simulated workplane illuminance results are similar to the measurement. Simulated illuminance was smaller than measured illuminance by 16.5%(60 lx). In accordance with applicable building skin parameters, lighting energy saving rate results are summarized as follows. Lighting energy saving rate of case1(windowsill height 0.7m) is higher than that of base case(windowsill and vertical wall) by 7.3% and the lighting energy saving rate of case2(no vertical wall) is higher than that of base case by 7.6% and the lighting energy saving rate of case3(no windowsill and vertical wall) is higher than that of base case by 12.4%. The lighting energy saving rate is increased by 2.3%, when window visible transmittance is increased from 70% to 86%. The lighting energy saving rate is increased by 4.6%, when we changed the WWR 70% to 90%. lighting energy savings rate is increased by 6.5%, when the width of double skin facade is reduced from 1m to 0.3m.