• Title/Summary/Keyword: Building Layer

Search Result 808, Processing Time 0.024 seconds

Field Application of the Concrete with the Combination of Drying Shrinkage-Reducing Superplasticizer and Double Layer Bubble Sheet (건조수축 저감형 유동화제 및 2 중 버블시트를 사용한 콘크리트의 현장적용)

  • Han, Cheon-Goo;Oh, Chi-Hyun;Shin, Jae-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.107-113
    • /
    • 2007
  • This study investigates the filed application in Daebul Free Trade Zone applying both a flowing method using drying shrinkage-reducing superplasticizer(SRS) and an insulating curing method using double layer bubble sheet. Test results showed that fresh concrete satisfied target slump and air content. A structure adding SRS significantly decreased the total bleeding capacity and accelerated the setting time. As for the crack occurrence, the structure applying the flowing method and double bubble sheets simultaneously exhibited the most favorable crack endurance, while conventional concrete showed more than 1mm size of crack in overall. In addition, a structure applying the flowing concrete method partially presented the micro crack. For the area proportion of crack occurrence, the structure using the double bubble sheets indicated 9.8%, while others applying flowing concrete method was 28%, compared with that of conventional one. For the compressive strength of specimens, standard curing specimens indicated $3{\sim}33%$ higher value than that of specimens cured besides the field construction. The specimens containing SRS improved the strength of $2{\sim}6MPa$, which is $10{\sim}22%$ higher than that of conventional concrete.

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.

An Experimental Study on the Sound Insulation Performance of Korean Traditional Windows by Using a Scale Model House (축소모형주택을 이용한 전통창호의 차음성능에 관한 실험적 연구)

  • Shin, Hoon;Jang, Gil-Soo;Song, Min-Jeong
    • Journal of the Korean housing association
    • /
    • v.17 no.5
    • /
    • pp.47-54
    • /
    • 2006
  • This study aims to evaluate the sound insulation performance of Korean traditional paper(Hanji) windows as a material of environmental friendly building. Six types of traditional windows with 4 types of traditional window positions, were installed in l/2.5 scale model house. And then according to KS F 2235, comparative sound level differences between outdoor and indoor were measured. The main results are as follows; 1) TL(Transmission Loss) of Korean traditional paper windows, which cover one eighth of total balcony window, are ranged from 15 to 19 dB(A) in the living room and from 8 to 11 dB(A) in the balcony space. 2) TL of Korean traditional paper windows, which cover one fourth of total balcony window, are ranged from 10 to 19 dB(A) in the living room and from 8 to 10 dB(A) in the balcony space. 3) TL of Korean traditional windows with one side-one layer paper is ranged from 10 to 21 dB(A) and two side-one layer paper is 15 to 23 dB(A) and two side-two layer paper is 19 to 23 dB(A) respectively.

Development of Variable Deposition Manufacturing for Ethylene Vinyl Acetatecopolymer (EVA를 이용한 가변 용착 쾌속 조형 공정 개발)

  • 이상호;신보성;정준호;안동규;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.771-774
    • /
    • 2000
  • RP techniques have inherent disadvantages caused by their working principles: stair-stepped surface of parts due to layer-by-layer stacking of layers, low build speed caused by line-by-line solidification to finish one layer, and post processing to improve surface finish, etc. The objective of this study is to propose a new RP technique, variable deposition manufacturing (VDM), which can make up for the disadvantages of the existing RP techniques, and to develop an apparatus to implement the technique. The proposed process can greatly reduce the building time and improve the surface finish of parts generated. The experiments are carried out to obtain the range of temperature of molten material to maintain its fluidity and to investigate the effect of gas cooling on the preservation of the slopes. Based on the results, some simple shapes such as a line-shape. an S-shape, and a circle-shape were fabricated from Ethylene Vinyl Acetatecopolymer (EVA). In order to examine the applicability of VDM to more general shapes, a tensile specimen and a yo-yo shape were manufactured by the proposed RP method using EVA material as the first trial approach. The present basic study has shown the possibility of a practicable utilization of the proposed VDM process to prototyping of a general three-dimensional shape.

  • PDF

Spatial extrapolation of pressure time series on low buildings using proper orthogonal decomposition

  • Chen, Yingzhao;Kopp, Gregory A.;Surry, David
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.373-392
    • /
    • 2004
  • This paper presents a methodology for spatial extrapolation of wind-induced pressure time series from a corner bay to roof locations on a low building away from the corner through the application of proper orthogonal decomposition (POD). The approach is based on the concept that pressure time series in the far field can be approximated as a linear combination of a series of modes and principal coordinates, where the modes are extracted from the full roof pressure field of an aerodynamically similar building and the principal coordinates are calculated from data at the leading corner bay only. The reliability of the extrapolation for uplift time series in nine bays for a cornering wind direction was examined. It is shown that POD can extrapolate reasonably accurately to bays near the leading corner, given the first three modes, but the extrapolation degrades further from the corner bay as the spatial correlations decrease.

Computational Soil-Structure Interaction Design via Inverse Problem Formulation for Cone Models

  • Takewaki, Izuru;Fujimoto, Hiroshi;Uetani, Koji
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A computationally efficient stiffness design method for building structures is proposed in which dynamic soil-structure interaction based on the wave-propagation theory is taken into account. A sway-rocking shear building model with appropriate ground impedances derived from the cone models due to Meek and Wolf (1994) is used as a simplified design model. Two representative models, i.e. a structure on a homogeneous half-space ground and a structure on a soil layer on rigid rock, are considered. Super-structure stiffness satisfying a desired stiffness performance condition are determined via an inverse problem formulation for a prescribed ground-surface response spectrum. It is shown through a simple yet reasonably accurate model that the ground conditions, e.g. homogeneous half-space or soil layer on rigid rock (frequency-dependence of impedance functions), ground properties (shear wave velocity), depth of surface ground, have extensive influence on the super-structure design.

  • PDF

Diffusion Simulation Using Envi-Met. in Urban Planetary Boundary Layer (Envi-Met.을 이용한 도심 대기경계층 내 확산장 변화 수치 모의)

  • Choi, Hyun-Jeong
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.357-371
    • /
    • 2016
  • Buildings in the city acts as a cause of distorted wind direction, wind speed, causing the stagnation of the air flow. In the recent trend of climate change can not but consider the temperature rise of the urbanization. This study was aimed to analyze the thermal comfort of planetary boundary layer in different artificial constructions areas which has a direct impact on urban climate, and estimating the warming phenomena. Envi-met model was used to consider the urban structure associated with urban growth in order to precisely determine the impact of the building on the city weather condition. The analyzed values of thermal comfort index were temperature, wind speed, horizontal and vertical turbulent diffusivity. In particular, analysis of the PPD(Predicted Percentage of Dissatisfied) represents the human thermal comfort. In this study, by adjusting the arrangement and proportion of the top floor building in the urban it was found that the inflow of the fresh air and cooling can be derived low PPD. Vertical heat flux amount of the city caused by climate change was a factor to form a high potential temperature in the city and the accumulation of cold air does not appear near the surface. Based on this, to make the city effectively respond to climate change may require a long-term restructuring of urban spatial structure and density management.

A Study on Evaluating the Fire Safety of the Regulation of Escape and Fire-Prevention from Enacting to Now - Focusing on the Hotel Building - (우리나라 피난방화규정의 제.개정시기별 화재안전성능 평가 - 호텔건물을 중심으로 -)

  • Lee, Se-Myong;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.28-41
    • /
    • 2011
  • Regulation of Escape and fire-prevention of Building of South Korea were enacted as a part of building codes in 1962. Since it was enacted, the law has gone through many changes. In this study, evaluated the fire safety of the law about the case of a hotel that the fire risk are expected to be higher whenever it was changed. As a result, the current law has gotten better in tire safety since it was enacted. However, especially it could be confirmed that the evacuation safety is insufficient in the lower level of hotel building. In the case of accommodation, because the occupants become aware of fire lately, they have not enough time to escape. Therefore, this study suggests that it is needed to come up with an effective counterplan about the interior finish materials, fire door and fire compartments that the smoke layer descending time is longer.

Seismic Response Evaluation of High-Rise Buildings Considering Installation Story of the Mid-Story Isolation System (중간층 면진시스템 설치 위치에 따른 고층건물의 지진응답 분석)

  • Kim, Ka-Yeong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.85-92
    • /
    • 2017
  • Base isolation system is generally used for low-rise buildings. For high-rise buildings subjected to earthquake loads, a mid-story isolation system was proposed and applied to practical engineering. In this study, seismic responses of high-rise buildings considering the installation story of the mid-story isolation system were evaluated. To do this, the 20-story and 30-story building were used as example structures. Historical earthquakes such as Kobe (1995), Northridge (1994) and Loma Prieta (1989) earthquakes were employed applied as earthquake excitations. The installation location of the mid-story isolation system was changed from the bottom of the $1^{st}$ floor to the bottom of the top floor. The seismic responses of the example building were investigated by changing the location of the isolation layer. Based on the analytical results, when the seismic isolation system is applied, story drift ratio and acceleration response are reduced compared to the case without the isolation system. When the isolation layer is located on the lower part of the building, it is most effective. However, in that case, the possibility that the structure is unstable increases. Therefore, an engineer should consider both structural efficiency and safety when a mid-story isolation system for a high-rise building is designed.