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ABSTRACT

A computationally efficient stiffness design method for building structures is proposed in which dynamic soil-structure interaction
based on the wave-propagation theory is taken into account. A sway-rocking shear building model with appropriate ground impedances
derived from the cone models due to Meek and Wolf (1994) is used as a simplified design model. Two representative models, i.e.
a structure on a homogeneous half-space ground and a structure on a soil layer on rigid rock, are considered. Super-structure stiffnesses
satisfying a desired stiffness performance condition are determined via an inverse problem formulation for a prescribed ground-
surface response spectrum. It is shown through a simple yet reasonably accurate model that the ground conditions, e.g. homogeneous
half-space or soil layer on rigid rock (frequency-dependence of impedance functions), ground properties (shear wave velocity),
depth of surface ground, have extensive influence on the super-structure design.

Keywords: stiffness design, inverse vibration problem, structure-foundation-soil interaction, cone model, soil layer on rigid rock,

wave propagation, design response spectrum

1. Introduction

The problem of soil-structure interaction (SSI) is very
important in identifying the damage to building structures
under strong ground motions and clarifying the input
mechanism of actual effective ground motions into the
building structures. Most of the SSI problems have been
solved theoretically or numerically and many useful obser-
vations and implications have been accumulated (see for
example, Luco, 1980; Cakmak et al., 1982; Wolf, 1985;
Cakmak, 1987; Wolf, 1988; Cakmak and Herrera, 1989;
Gupta and Trifunac, 1991; Meek and Wolf, 1994; Wolf,
1994; Kausel and Manolis, 2000). However, it may be true
that most of the previous analysis techniques are too com-
plicated and/or time-consuming. It is also true that, while
analysis methods of the SSI effects have been well estab-
lished, the corresponding design methods for building
structures have never been developed except a few
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attemnpts by the present authors (Nakamura and Takewaki,
1985, 1989b; Nakamura et al, 1992, 1996; Takewaki,
1998; Takewaki and Nakamura, 1995, 1997; Takewaki et
al., 1998, 2002). It is therefore not necessarily easy for
structural designers to incorporate the essential features of
the SSI effects mto their usual structural design practice.
To tackle this problem in a smart manner, some attempts
have been conducted by introducing simplified models or
techniques. Simplicity of the computational procedure
together with its accuracy is an important issue in the prac-
tical structural design. Among them, the cone model due
to Meek and Wolf (1994) may be a simple yet reasonably
accurate model. In this paper, this cone model is used to
take into account the SSI effects in the design process.

The purpose of this paper is to propose a new com-
putationally efficient stiffness design method for building
structures taking into account the various aspects of the
SSI effects. A sway-rocking shear building model with
appropriate ground impedances derived from the cone
model is introduced as a simplified design model and
super-structure stiffnesses satisfying a desired stiffness
performance condition are determined for a prescribed
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ground-surface response spectrum. An inverse vibration
formulation is developed in the process of the super-struc-
ture stiffness design in which the fundamental natural fre-
quency of the interaction model is regarded as a principal
design parameter. It is shown that the ground conditions,
e.g. homogeneous half-space or soil layer on rigid rock
(frequency-dependence of impedance functions), ground
properties (shear wave velocity), depth of surface ground,
have extensive influence on the super-structure design. It
should be noted that the previous papers (Nakamura and
Takewaki, 1985, 1989b; Nakamura et al., 1992, 1996;
Takewaki, 1998; Takewaki and Nakamura, 1995, 1997
Takewaki et al., 1998, 2002) do not present methods for
incorporating the properties of three-dimensional wave-
propagation within a reasonable amount of computational
resources and a reasonable accuracy.

2. Design Problem

Consider a shear building model supported by a flat-slab
foundation on a homogeneous visco-elastic half-space or
on a homogeneous soil layer on a rigid rock. The viscosity
of the ground will be considered approximately by adding
the viscous damping ratio to the radiation damping ratio
evaluated via the cone models. The former model is called
the half-space model (see Fig. 1(a)) and the latter is called
the soil layer model (see Fig. 1(b)). It is noted that, while a
homogeneous half-space ground has often been utilized in
computing foundation impedances in usual structural
design practice, the evaluation of impedance functions for
the soil layer model taking into account the three-dimen-
sional wave propagation is not so simple and easy. Such
difficulty is overcome by introducing the cone models due
to Meek and Wolf (1994). Both design models are mod-
eled as a shear building model supported by a swaying and
rocking spring-dashpot system. The objective of the
design problem is to find the story stiffnesses of a model
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Fig. 1. (a) Foundation on half-space ground (half—space model)
(b) Foundation on soil layer on rigid rock (soil layer model).

which exhibits a specified mean peak interstory drift & (or
story drift angle=4&/(story height)) to the design earth-
quake.

The design earthquake is defined at the ground surface
level in terms of a design displacement response spectrum.
The design displacement response spectrum Sy(7'; h)
(Newmark and Hall, 1982) is defined by

SHUT:h) = iy 1yx(3.21-0. 68/n(100h))( ) (T<T)

SOUTsh) = i1, 1, (231 - 041/n(100h))( )(TL T<T,)

g max

SSNTh) = u, ,, (1.82-0.271n(100h))(T,<T) (1)

g max
where T and 4 denote the natural period and damping ratio.
T, and T, are determined from Sg)(TL;h) = SN(T,;h) and
SA(T,;h) = S5)(Ty;h) . The maximum ground accelera-
tion i, .y, velocity i, ma and displacement u, ., are

assumed to be 0.804 (m/s ), 0.100 (m/s) and 0.075 (m),
respectively.

3. Foundation Impedance Via Cone Models

A sway-rocking model is used in the stiffness design
explained in the next section. It is necessary to evaluate the
foundation impedances which will be used as the spring
stiffnesses and dashpot damping coefficients of the sway-
rocking model. To compute the foundation 1mpedances
the cone model is used (Fig. 1).

The cone model has been proposed by Meek and Wolf
(1994) and Wolf (1994) for evaluating the dynamic stiff-
ness and the effective input motion of a foundation on the
ground. Compared to more rigorous numerical methods,
this cone model requires only simple numerical manip-
ulation within reasonable accuracy. The cone model is
based on an assumption that the force transmitting mech-
anism of a foundation on the ground subjected to dynamic
disturbances can be represented approximately by a cone
chopped by the foundation. The accuracy investigation of
the cone models has been made extensively by Wolf
(1994) for various parameter ranges through the com-
parison with the results due to more rigorous methods. The
procedure of evaluating the impedance functions via the
cone models is simply described in Appendix 1 and the
horizontal and rocking components for Poisson’s ratio
0.45 are illustrated in Fig. 2. The soil density, the shear
wave velocity, the radius of the circular foundation and the
depth of soil layer (soil layer model) are p=1.6x 10°
(kg/m3) , Vs=200(m/s), ro=10(m) and dp=20(m).
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Fig. 2. Impedance functions for half-space model and soil laye:
model: (a) horizontal stiffness, (b) horizontal damping coefficient
(c) rocking stiffness, (d) rocking damping coefficient.

4. Stiffness Design Method Via Inverse Problem
Formulation

4.1 Equations of motion for sway-rocking model
Consider an f-story shear building model, as shown in

Fig. 3, supported by a swaying and rocking spring-dashpot

system. Let u, and 6, denote the horizontal displacement

and angle of rotation of the ground floor and let u;, ..., Uy
up{ )
() my Ipy

Y
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Fig. 3. Shear building model supported by swaying and rocking
spring-dashpot system.
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denote the horizontal displacements of the upper floots
without any rigid-body mode component due to the
ground floor (foundation) motion. The set {u}={u,...
Upup OF}T is treated as the generalized displacements
where ( )T denotes the transpose of a vector. Let k; and
kg denote the stiffnesses of the swaying and rocking
springs and let ¢, and ¢, denote the damping coefficients
of the swaying and rocking dashpots. The damping coet-
ficients include the radiation damping deriv-ed from the
cone models and the material damping of soil. The inter-
story drift §=u;~u;_; does not include any rigid-body
mode component. Let k; denote the stiffness in the jth
story.

Let m, Ig; and H; denote the mass, the moment of iner-
tia around its centroid and the height of the mass in the jth
floor from the ground surface. The story height of the jth
story is denoted by /;. The system mass matrix may be
expressed as

[(Mg] Mgyl [Mpgl

(M] = E 1 E2 (2)

sym. Es

where

[My] =diag(m,...m)), [Mgy] = {m,...m}",

(Mgl ={m H,...mH}"

A S S X S
E\ =7 my E;=7% mH, Ey=Y mH, + ki
i=0 i=1 i=1 i=0

(3a-¢)

H=%h; (4a-d)
j=1

The system stiffness matrix may be described as

[K]=[Kp]+[Kyl+{Kg] &)
where
[ k+ky 1
S
kitkiy-.
[KB] = . —kf_1 »
kv +kp —ky
sym 0o
L. 0 -

[Ky] = diag(0... 0 ky 0), [Kil=diag(0...0 0'kg) (6a-c)
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Let us assume that the damping matrix [C] of the model
is expressed as the superposition of the damping matrices
of the three parts, i.e., the building, the swaying dashpot
and the rocking dashpot. Let ¢; denote the damping coef-
ficient in the jth story. It is also assumed here that each
subassemblage has a stiffness-proportional damping ma-
trix. Let /1, denote the damping ratio of the shear building
model. Let @, denote the undamped fundamental natural
circular frequency of the interaction model. The system
damping matrix [C] may then be described as

[C]= [CB]+[C1—1]+[CR] (7)

where [Cl(= (2h5/,)[Kp]) 1s derived by replacing {4;}
in [Kg] by et and

[Cy/] = diag(0...0 ¢, 0), [Cgl =diag(0...0 0 ¢;) (8a, b)

This system is subjected to the horizontal ground surface
acceleration i, . The equations of motion of the system
may be described as

(M]{a}+[CHu}+[K{u} =-M{qti, ®

The influence coefficient vector {g} can be given by

fgy=1{0...010} (10)

It should be reminded that the first f equations in equa-
tion (9) represent the equations of horizontal equilibrium
of the floors except the ground floor and the (f+1)-th equa-
tion and (f+2)-th equation represent the equation of hor-
izontal equilibrium as a whole of the building-spring
system and that of rotational equilibrium as a whole of the
building-spring system around the ground floor, respec-
tively.

4.2 Stiffness design via inverse problem formulation

A formula of story stiffnesses has been derived (Naka-
mura and Takewaki, 1985; Takewaki, 1998) for a specified
fundamental natural circular frequency of a sway-rocking
model and a uniform distribution of lowest-mode inter-
story drifts (see Appendix 2). That formula has been
derived originally for fixed spring stiffnesses (frequency-
independent values). However, it may also be used in
the case where the spring stiffnesses are variable in the
frequency range and determined approximately as k=
ky(®,), kr=kg(®,), for the fundamental natural circular
frequency @,. This expression is used in this paper. It is
noted that the investigation on the design-space corre-
spondence between the frequency-independent model and
the frequency-dependent model is very important (see
Nakamura and Takewaki, 1989a).

If it is assumed that the mean peak interstory drifts

{6; max + Of a rather low-rise building can be approximated
by a fundamental vibration component in the SRSS esti-
mate (square root of the sum of the squares, Der
Kiureghian, 1980), the following relation holds.

&max;SD(Tl;h“))%:u (11)

where u is the interstory-drift component (uniform in this
case) in the lowest eigenmode and ¥, is the lowest-mode
participation factor. 7, and n'" are the undamped funda-
mental natural period and the lowest-mode damping ratio
of the sway-rocking model. It is also assumed that the
equations of motion of the sway-rocking model can be
decomposed approximately into classical normal modes.
This assumption has been verified in a fairly wide parame-
ter range by the present authors (Nakamura and Takewaki,
1989b). When the normalization condition of the lowest
eigenmode @ with respect to the mass matrix [M] is
employed, 1 and ¥, may be expressed as

A S 2
U= (:mOUi—+ S m(Up+ OpH,+i) + Z@,@i} (12)
i=1 i=1
S
Y ={mOUF+ Zm,-(UF+ GFH,»H')},u (13)
i=1
Up and O are defined in Appendix 2. The lowest-mode
damping ratio may then be expressed as

- L PICle
200" M@
2
= QIJEI {CH(G)I)Up(ﬂ’l)z"'ck(a’l)@:”(wf)z

/ 2h,
+l§1;1ki(wl)} (14)
where ¢y (@), cp(®)), k(0,), U @), Oc(w,) are func-
tions of w, .

From equations (11)-(14), 6, .., can be regarded as a
function of the undamped fundamental natural period T
of the interaction model. In the present design algorithm,
T, is regarded as the principal design parameter and it is
aimed at finding 7, such that &, ,, would coincide with
the specified value &;. It should be pointed out that the
present method does not require eigenvalue analysis and
facilitates its use in usual structural design practice.

5. Design Examples

1t is well-known that soil-structure interaction is remark-
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able in low-rise building structures. A three-story and five-
story shear building models are considered here. The span
of the building model is 10(m) and each story height is
3.5(m). A circular foundation mat of area=300(m’) is
assumed {r, = 9.8(m) ). The masses and moments of iner-
tia are mg=2.4x10°(kg),m,;=0.8x10°(kg)(i#0), 1,=2.0
x10°(kg - m*), 15, = 0.667x 10°(kg - m*)(i#0) . The damp-
ing ratio 0.02 is considered for the building model.
Four shear wave velocities V=50, 100, 200, 400(m/s)
are considered. It should be noted that these shear wave
velocities should be regarded as equivalent ones taking
into account the stiffness reduction of soil with respect to
strain level. The density of soil is assumed to be
1.6x 10°(kg/m’) . Three depths of surface layer d,=10, 20,
40(m) are considered. The material damping of soil is
expressed in terms of a swaying damping ratio 0.05 (stiff-
ness-proportional viscous damping). This swaying mate-
rial damping is added to the radiation damping evaluated
by the cone model. The specified story drift angle is 1/400.
Figs. 4(a)-(d) are illustrated for the 3-story models for
various ground shear wave velocities. Fig. 4(a) shows the
mean peak interstory drift given by Eq.(11) with respect to
the fundamental natural period of the interaction model for
the half-space model. The period for zero interstory drift
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Fig. 4. 3-story model for various shear wave velocities for half-
space model and soil layer model: (a) interstory drift vs. funda-
mental period of interaction model (half-space model), (b) story
stiffness (half-space model), (¢) interstory drift vs. fundamental
period of interaction model (soil layer model), (d) story stiffness
(soil layer model).
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indicates the fundamental natural period of the rigid model
supported by the corresponding soil springs. The fun-
damental natural period of the interaction model satisfying
the stiffness design condition (story drift angle=1/400) can
be found directly from Fig. 4(a). This graph is very useful
for performance-based design which requires the straight-
forward determination of story stiffnesses for various
response targets. Fig. 4(b) illustrates the corresponding
story stiffnesses for the specified story drift angle. Figs.
4(c), (d) shows the corresponding distributions for the soil
layer model (d,=20m). Irregular response properties in
Fig. 4(c) for the soil layer model may result from the irreg-
ular impedance functions shown in Fig. 2. It can be
observed that, as the ground shear wave velocity becomes
smaller, the super-structure story stiffness for the specitied
interstory drift level becomes smaller.

Figs. 5(a)-(d) are shown for the 5-story models cor-
responding to Figs. 4(a)-(d). The depth of soil layer in the
soil layer model is d,=20 m. A similar tendency to the 3-
story model can be observed.

Fig. 6 illustrates the comparison of the half-space model
and the soil layer model (d,=20 m) for the 3-story models.
Figs. 6(a), (b) are for the shear wave velocity of 100(m/s)
and Figs. 6(c), (d) are for 400(m/s). It can be observed that
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(soil layer model).
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a difference exists as the shear wave velocity becomes
small.

Fig. 7 shows the corresponding distributions for the 5-
story model. The depth of soil layer in the soil layer model
is d,=20 m. It can be observed that larger story stiffhesses
are required for the soil layer model. This may result from
the complicated combination of horizontal soil spring stiff-
ness and dashpot damping coefficient. The dimensionless
frequency corresponding to the fundamental natural period
is about 0.6 in this case. While the horizontal soil spring
stiffness of the soil layer model is larger than that of the
half-space model, the dashpot damping coefficient of the
soil layer mode! due to the radiation damping is much
smaller than that of the half-space model (Fig. 2(a), (b)).
This small radiation damping of the soil layer model
results from the existence of the cut-off frequency.

Fig. 8 shows the comparison for various depths of soil
layer for the 3-story model. It can be observed that no clear
tendency exists for the difference of depth of soil layer. In
this case the depth of 20(m) requires the smallest set of
story stiffnesses. This may result from the resonance
between the soil layer vibration and the super-structure
vibration.

Fig. 9 illustrates the corresponding distributions for the
5-story model. It is interesting to note that, if the specified
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Fig. 8. 3-story model for various depths of soil layer: (2) interstory
drift vs. fundamental period of interaction model (. =100(m/s)),
(b) story stiftness (V=100(m/s)), (c) interstory drift vs. fundamen-
tal period of interaction model (V=400(r1/s)), (d) story stiffness
(V' =400(m/s)).
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level of interstory drift is modified in a relatively small
shear wave velocity (100 m/s), the order of the required
story stiffnesses for various depths of soil layer changes
irregularly.

Table 1 shows the lowest-mode damping ratio for the

Table 1(a). Lowest-mode damping ratio for 3-story model

Soil layer model
dp=10(m) dp=20(m) dp:40(m)

Half-space model

Vs=50(m/s) 0.092 Vs=50(m/s) 0.056 0.054 0.062
Vs=100 0.037 V=100 0.021 0.037 0.026
Vs=200 0.020 V=200 0.020 0.020 0.021
Vs=400 0.020 V=400 0.020 0.020 0.020

Table 1(b). Lowest-mode damping ratio for 5-story model

Soil layer model

Half-space model
dp=10(m) dp=20(m) dp=40(m)

V=50(mi/s) 0.056 V=50(m/s) 0.023  0.050  0.037
V=100  0.028 V=100 0.020  0.037  0.023
V=200  0.021 V=200 0020 0020 0.021
V=400  0.020 V=400 0.020  0.020  0.020
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half-space model and the soil layer model. It can be
observed that, when the soil shear wave velocity becomes
large, the lowest-mode damping ratio approaches to the
damping ratio 0.02 of the super-structure. However, there
is no clear tendency on dependence of the damping ratio
on the depth of soil layer in the soil layer model.

The accuracy of the present sway-rocking shear building
model has been investigated extensively by the present
authors (Nakamura and Takewaki, 1989b; Takewaki er al.,
2002). It has been shown that the present model is rea-
sonably accurate in wide parameter ranges. This supports
the reliability of the present design method together with
the reasonable accuracy of the cone models.

6. Conclusions

The following conclusions may be drawn:

1. The design model of a building structure supported by
a spring-dashpot system with impedance functions
evaluated by the cone model can be a simple yet rea-
sonably accurate model which can take into account
the soil-structure interaction effects in usual structural
design practice in a smart manner.

2. The formulation of inverse vibration problems for the
design model with given impedance functions pro-
vides a useful design tool for finding story stiffnesses
satisfying a stiffness performance condition. This for-
mulation does not require eigenvalue analysis and
enables one to trace efficiently various designs sat-
isfying different performance conditions.

3. The following properties have been clarified by
means of this formulation. (1) As the soil becomes
stiffer, the influence of the ground properties on the
design of super-structures becomes smaller; (2) As the
soil becomes softer, story stiffnesses required for the
given stiffness performance condition become smaller
both in the half-space model and the soil layer model,;
(3) The half-space model requires smaller story stiff-
nesses than the soil layer model (small radiation
damping in the frequency range below the cut-off fre-
quency and strong frequency dependence of imped-
ance functions are key factors); (4) The influence of
the depth of soil layer on the super-structure design is
not clear (the resonance between the soil layer vibra-
tion and the super-structure vibration may be a key
issue).

It should be noted that the same design response spec-
trum defined at the ground surface level has been used
regardless of the soil conditions in this paper. This treat-
ment has been introduced to investigate purely the influ-
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ence of the soil conditions (impedance functions) on the
super-structure design. The simultaneous consideration of
the influence of the soil conditions on the input design
response spectrum and of the present analysis will lead to
a more complete analysis of the SSI effects in the design
problem.
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Appendix 1: Impedance functions via cone mod-
els (Meek and Wolf, 1994; Wolf, 1994)

[Half-space Model]
(Horizontal)

Let G, v,p, Vg denote the soil shear modulus, Poisson’s
ratio, mass density and shear wave velocity. 4, and r, are
the foundation area and radius and Z is defined in Fig. 1.
The static horizontal stiffness of the cone model can be
expressed by

G4,y _ pVSZAO
z, 1z

K= (A1)

The static horizontal stiffness of the continuum model is
obtained by

8Gry
2-v

(A2)

Equating (A1) and (A2) leads to the determination of the
aspect ratio.

DoZ5 v

3
2-3 (A3)

The horizontal spring coefficient and dashpot damping
coefficient can then be expressed by

(A4a)

(A4b)
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(Rocking)

Let /, denote the second moment of foundation area.
The static rotational (rocking) stiffness of the cone model
can be expressed by

_3pVI,

K
0
Zp

(A5)
The static rotational (rocking) stiffness of the continuum
model is obtained by

3
_ 8Gr,
3(1-v)

Ko (A6)

Equating (A1) and (A2) leads to the determination of the
aspect ratio.

0 _9n vy
o 32“‘”(1@) (AD)
Let us define the following function.
4gzo( VsV 2 1 ap
—Jp_2exflsy 2l f0
Sol@)=11-3 n:ro(V) %073 rOV)Z >
(ZOVS +ho
2
e 4y
T 3, VT (A3)
(ZO_VS)-'_aO
where a, = wry/Vs and
He=0, V=V, (v<1/3) (A9a)
Ug=0371(v—(1/3)), V=2V, (1/3<v<1/2) (A9b)

V, 1s the longitudinal wave propagation velocity. The rota~
tional (rocking) spring coefficient and dashpot damping
coefficient can then be expressed by

ky = K Re(S,)

(A10a)
cp= Kelmf") (A10b)

[Soil Layer Model]
(Horizontal)

Let d, denote the depth of soil layer. Let us define the
following function.

(A1)
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where
2d 2d
- kel ig
r=JE K= (Al2a, b)
/
Y efzzl(;},)( (=1) (Al3a, b)

The horizontal spring coefficient and dashpot damping
coefficient can then be expressed by

k,; = KRe(S) (Al4a)
_ pAm(S)
ey = KTk (A14b)

where K is the static horizontal stiffness for the soil layer
model.

(Rocking)
Let us define the following function.
2 2
11 _(of) ;0T (o)
32 Y 2
Se(®) = K +(wT) K +(oT)
2 z e 7T T Wit
1+ -1y +i=% (=1Y -
1+ ,2. (1+jx)’ ",-; (1+j%)°
(A15)
_2dp . _2dp
I== k= p (Alé6a, b)
V=V, (v<1/3), V=2V, (1/3<v<1/2)  (Al7a, b)

The rotational (rocking) spring coefficient and dashpot
damping coefficient can then be expressed by

kp = K Re(Sg) (Al8a)
¢n = Koo (A18b)

where K, is the static rotational stiffness for the soil layer
model.

Appendix 2: Story Stiffnesses of the Shear Build-
ing with a Specified Lowest Eigenvalue and a

Uniform Distribution of Lowest-Mode Interstory
Drifts (Nakamura and Takewaki, 1985)

Let ©; denote the specified lowest eigenvalue of the
interaction model which can be expressed as Q=
QQn/T l)2 in terms of the fundamental period 7, . The story
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stiffnesses of the model can be obtained from 3 7
_ ! D1=E1—!—2_H’ D,=E,, D3=Zimi
k=Y m(Up+ OpH+1) (G=1,2,....0) (A19) ! i=1
i=j i S
H, is defined in equation (4d). U, and O, are given by D, = Es*%’ D= im;H, (A2la-e)
1 i=1
= 227Dl g DoDym DD, (A20a, b)
D\Dy-D; D\Dy=D; The symbols E,, E,, E; are defined in equations (4a-c).

where



