• 제목/요약/키워드: Building Energy Efficiency

검색결과 736건 처리시간 0.031초

초고층 주상복합 아파트의 에너지 소비특성에 관한 연구 (A Study on the Characteristic of Energy Consumption in the Super High-rise Mixed-use Housing)

  • 이병희;이재혁;제해성;강동호
    • KIEAE Journal
    • /
    • 제10권5호
    • /
    • pp.63-69
    • /
    • 2010
  • Recently, by the increase of demand on Super High-rise mixed-use housing and it's advanced quality, the interest on it has been raised socially. In accordance with it, the matter of resident's health and energy efficiency has been controversial in terms of living in super high-rise housing. This study started from the idea that it is necessary to have an objective data which that has many residents in narrow space with high density. The purpose of this study are as follows; Firstly, with the quantitative data analysis on energy, it will confirm the objective information on the unclear negative idea of super high-rise mixed-use housing. Secondly, it will establish the fundamental data on the energy of super high-rise mixed-use housing by examining the characteristic of energy consumption of the complex which was built more than 5 years ago. There are 4 methods of this study. Firstly, it follows the steps of theoretical view, and defines concept to study on the characteristic of super high-rise mixed-use housing. Secondly, referring to the previous study, it provides better understanding on th stream of this research and the limit as well to guide the direction in terms of energy consumption. Thirdly, it evaluates the characteristic of monthly consumption by researching the use of electricity energy and heating energy of super high-rise mixed-use housing. The major conclusions of this study are as follows; Firstly, the heating use of apartment complex is same, which is not influenced by the type of the building. Secondly, the electricity use of super high-rise mixed-use housing is from 1,2 to 1.5 as high as the normal apartment.

교통정보 제공 매체별 이용자 만족도 모형 개발 (The Development of Customer Satisfaction Model by Traffic Information Provision Media)

  • 홍지연;이수범;임준범;김장욱;강원의
    • 대한교통학회지
    • /
    • 제28권3호
    • /
    • pp.109-117
    • /
    • 2010
  • 첨단교통정보제공시스템(ATIS)분야는 실시간 교통정보를 가변전광표지(VMS), 인터넷, 교통방송 및 휴대폰 등 다양한 정보제공매체를 통해 제공함으로써 주어진 교통자원을 효율적으로 활용하여 도로 이용자들이 목적지까지의 통행함에 있어 시간 및 비용을 절감시킬 수 있도록 함에 그 목적이 있다. 이러한 교통정보는 시간적 경제적인 면뿐만 아니라 이용자의 심리나 정서적인 부분, 즉 교통정보를 제공받음으로 인한 불안감 해소와 같은 심리적인 부분에서도 상당한 편익을 제공할 수 있는 가치를 지니고 있다. 본 연구에서는 이러한 도로 이용자들이 느끼는 교통정보의 효용성을 평가하고 이용자가 느끼는 만족의 정도에 미치는 요인을 분석하고자, 다양한 교통정보 제공 매체별 이용자 만족도 모형을 구축하고자 하였다. 모형 구축 결과, 각 매체별로 만족도에 영향을 미치는 요인과 그 영향정도가 조금씩 다르나, 공통적인 영향요인으로 운전자들이 교통정보를 보고 그로 인한 심리적인 안정감이나 경로선택 및 변경에 도움이 있었는지에 여부를 나타내는 효율성이 만족도에 가장 큰 영향을 미치고 있음을 분석할 수 있었다.

Harmonics Reduction in Load control and Management system

  • Thueksathit, W.;Tipsuwanporn, V.;Hemawanit, P.;Gulpanich, S.;Srisuwan, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2283-2286
    • /
    • 2003
  • This paper presents conservation of electrical energy in building with harmonics analysis and compensation which occur in electrical system. We use load controlling and management system in order to adjust load factor of system.The maximum demand limiting and controlling are used ,then the system can acquire the prediction and compare it to the maximum demand set point.The electrical signal analysis based on FFT technique. The harmonics are compensated by using harmonic filters.This system consists computer which works as controller, processor , analysis and database unit together with digital power meter in form of multidrop network through serial communication via RS-485.The load control system uses PLC to control load via serial communication RS-485. The A/D converter is used for sampling the electrical signals via parallel port of computer.The harmonic filters are controlled by a computer.The data of measurement such as voltage, current, power, power factor, total harmonic distortion, energy, etc., can be saved as database and analysis. The load factor is adjusted by limiting and controlling maximum demand. The load factor adjustment can reduce the cost of electric consumption and energy generation together with harmonics compensation in order to increase high efficiency of electrical system.

  • PDF

태양광 모듈의 투과특성과 효율과의 연관성에 대한 연구 (Study on relation of transmittance characteristics and efficiency for Photovoltaic Module)

  • 정인성;정은석;김정근;이범수;김종일;김철주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.453-453
    • /
    • 2009
  • Wafer 태양전지와 Back sheet 및 기타 소재를 사용하는 기존의 Photovoltaic Module은 투과성이 존재하지 않으므로 본 논문에서는 태양전지 모듈의 투과특성을 발휘할 수 있는 Glass to Glass (GtG) Type의 Photovoltaic module에 대해 그 투과 특성 및 효율과의 관계를 분석하였다. 먼저 Module용 소재 중 Poly vinyl butyral (PVB) 및 Ethylene vinyl acetate(EVA) sheet의 Transmittance와 Haze 특성을 분석하였다. GtG 타입의 Photovoltaic Module은 약 90%정도의 투과율을 갖는 강화유리 및 Haze가 없는 PVB sheet를 사용하여 1m $\times$ 1m 크기로 제작하였다. GtG 타입으로 제조한 모둘 중 Cell 16EA를 사용한 모듈은 Cell 25EA를 사용한 모듈에 비해서 36% 투과율이 증가하였으나 효율 면에서 38%감소하였다. 최종적으로 GtG 타입 Module의 효율과 투과율에 관련된 식을 각각 정립하였다.

  • PDF

토양 및 지하수 조건이 지열공조시스템의 성능에 미치는 영향에 관한 수치 해석적 연구 (Numerical Analysis for the Effect of Ground and Groundwater Conditions on the Performance of Ground Source Heat Pump Systems)

  • 남유진
    • 설비공학논문집
    • /
    • 제23권5호
    • /
    • pp.321-326
    • /
    • 2011
  • Recently, ground source heat pump (GSHP) systems have been introduced in many modem buildings which use the annually stable characteristic of underground temperature as one of the renewable energy uses. However, all of GSHP systems cannot achieve high level of energy efficiency and energy-saving, because their performance significantly depends on thermal properties of soil, the condition of groundwater, building loads, etc. In this research, the effect of thermal properties of soil on the performance of GSHP systems has been estimated by a numerical simulation which is coupled with ground heat and water transfer model, ground heat exchanger model and surface heat balance model. The thermal conductivity of soil, the type of soil and the velocity of groundwater flow were used as the calculation parameter in the simulation. A numerical model with a ground heat exchanger was used in the calculation and, their effect on the system performance was estimated through the sensitivity analysis with the developed simulation tool. In the result of simulation, it founds that the faster groundwater flow and the higher heat conductivity the ground has, the more heat exchange rate the system in the site can achieve.

A lateral load pattern based on energy evaluation for eccentrically braced frames

  • Fakhraddini, Ali;Fadaee, Mohammad Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.623-632
    • /
    • 2018
  • Performance-Based Plastic Design (PBPD) method has been recently developed to evaluate the behavior of structures in different performance levels. The PBPD method utilizes a base shear force and a lateral load pattern that are estimated based on energy and yielding mechanism concepts. Using of current lateral force pattern results in weak structural members in upper stories of a structure so that the values of the story drift in these stories are larger than the target drift, particularly in high-rise buildings. Therefore, such distribution requires modifications to overcome this drawback. This paper proposes a modified lateral load pattern for steel Eccentrically Braced Frames (EBFs) based on parametric study. In order to achieve the modified load pattern, a group of 26 EBFs has been analyzed under a set of 20 earthquake ground motions. Additionally, results of nonlinear dynamic analyses of EBFs have been post-processed by nonlinear regression analysis in order to derive the new load pattern. To prove the efficiency of present study, three EBFs as examples were designed by modified pattern and current PBPD distribution. Inelastic dynamic analyses results showed that the story drifts using modified lateral load pattern were well within the target values in comparison with current pattern in PBPD, particularly where the effect of the height is significant. The modified load pattern reduces the possibility of underdesigning in upper levels and overdesigning in lower levels of the frames.

창호통합형 배열회수 환기시스템의 열성능 및 경제성 평가 (An Analysis on Thermal Performance and Economic of Heat Recovery Ventilation System Integrated with Window)

  • 성욱주;조수;송규동
    • 설비공학논문집
    • /
    • 제24권8호
    • /
    • pp.646-655
    • /
    • 2012
  • This study is intended to analyze the thermal performance and evaluate the applicability about non-duct type heat recovery ventilation system integrated with window. Eventually, economic analysis of the system is conducted according to building energy saving ratio of it. As results of the thermal performance, the U-factor of the window conducted on the basis of KS F 2278 appears to $1.8W/m^2K$, and the effective heat exchange efficiency of the ventilator conducted on the basis of KS B 6879 appears 49.95% for cooling, 66.89% for heating. In the applicability evaluated by TRNSYS 16, the caes of applying the heat recovery ventilator integrated with window is found to reduce the cooling or heating load by 2.9% or 13.5% than the non-ventilator case. The results of economic analysis taking a side of consumer is verified as the payback is 3 years, and the accumulated earning is 1,408,133 won in terms of '600,000 won/unit' for initial cost, 10 years for useful life of the system.

대학 캠퍼스 냉·난방시스템 최적화 방안 연구 (A Study on the Optimization of Heating and Cooling System in University Campus)

  • 박소연;박효순;이상혁;김지연;홍성희
    • KIEAE Journal
    • /
    • 제10권6호
    • /
    • pp.139-144
    • /
    • 2010
  • The demands are increasing for the efficient heating and cooling system and thermal comfort environment because of changes in climate and environment, and deterioration of buildings and facilities can cause education budget to increase. So the study to apply heating and cooling system to university is urgently needed to improve an optimum energy saving system, educational environment and convenience of maintenance. For this reason, we selected a university campus in Seoul then came to understand the current situation and found some problems. We drew alternatives from comparative analysis of them. It selects representative building and carries out economic analysis to evaluate characteristics of energy consumption and economics on each type of heating and cooling system. As a result we drew the optimum system from those processes as previously stated. We studied 3 available systems, absorption chiller, EHP(Electric Heat Pump) and GHP(Gas Engine Heat Pump). According to LCC analysis suppose that the value of EHP is 1, it came out that the value of absorption chiller is 1.5 and the value of GHP is 2.2. This study, suggesting the optimum heating and cooling system, will support educational and research activities furthermore effect to maximize energy efficiency. Ultimately it is expected that it will contribute to make eco-friendly Green Campus.

Cyclic tests of steel frames with composite lightweight infill walls

  • Hou, Hetao;Chou, Chung-Che;Zhou, Jian;Wu, Minglei;Qu, Bing;Ye, Haideng;Liu, Haining;Li, Jingjing
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.163-178
    • /
    • 2016
  • Composite Lightweight (CL) insulated walls have gained wide adoption recently because the exterior claddings of steel building frames have their cost effectiveness, good thermal and structural efficiency. To investigate the seismic behavior, lateral stiffness, ductility and energy dissipation of steel frames with the CL infill walls, five one-story one-bay steel frames were fabricated and tested under cyclic loads. Test results showed that the bolted connections allow relative movement between CL infill walls and steel frames, enabling the system to exhibit satisfactory performance under lateral loads. Additionally, it is found that the addition of diagonal steel straps to the CL infill wall significantly increases the initial lateral stiffness, load-carrying capacity, ductility and energy dissipation capacity of the system. Furthermore, the test results indicate that the lateral stiffness values of the frames with the CL infill wall are similar to those of the bare steel frames in large lateral displacement.

발광형 태양광 집광기 최신 연구 동향 (Recent Progress and Prospect of Luminescent Solar Concentrator)

  • 송형준
    • 한국태양에너지학회 논문집
    • /
    • 제39권4호
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.