• Title/Summary/Keyword: Building Energy Efficiency

Search Result 753, Processing Time 0.03 seconds

A Study on the manage of efficiency of electric facilities for a type of Medium-small building (중.소형 건축물설비의 효율적 전력관리방안 연구)

  • Lee, Sang-Chip;Park, In-Duck;Lee, Won-Goo;Kim, Dae-Gwun;Oh, Bong-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.838-840
    • /
    • 1998
  • The power demand has increased the groth of industry and improvement of life. Otherwise the power supply is more difficult. because of regional egoism, reinforcement for environment, and investment of money. The load installation should be promoted to rational power management, according to the network, inteligent, and high-function. Therefore, this paper is made a study for the method of energy saving and for energy saving of medium-small type small type-below 500kW medium type-between $500{\sim}1.000kW$.

  • PDF

A Study on the Application of Fixed-concentrated PV Module Hybrid Panel for BIPV (고정식 집속형 PV모듈 복합패널의 BIPV적용성 검토)

  • Seo, Yu-Jin;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.77-83
    • /
    • 2005
  • The verified thermal efficiency, thermal capacity confirmed the effects of the cooling system. Therefore, it is useful for preventing the PV cell temperature rising when solar radiation accumulates in summer. When adopting a hybrid panel for the BIPV system, the affected areas include the vertical outside walls facing the south, southeast, and southwest on the curtain walls excluding windows. The standards on replace aluminum panel which were the popular exterior material were investigated, Designing practice made sure that it could be manufactured in various sizes, and confirmed the most proper method to install a hybrid panel in the BIPV system.

A Study on Green Remodeling Methods of Apartment Houses (공동주택의 환경친화적 리모델링 계획 방법에 관한 연구)

  • Na, Su-Yeun
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.9-19
    • /
    • 2003
  • This study aims to propose Green Remodelling methods of apartment houses in Korea. Through the literature review and case studies various 'Green' Remodelling elements including environmental friendly technologies were identified and classified. Design strategies and remodeling techniques which could increase energy efficiency, reduce water and resource use, improve air qualify, improve landscape management, and improve maintenance were also investigated. Then, 'Green remodelling' methods of apartment houses are proposed as the des19n methodology of remodeling for sustainable development. The green Remodeling design methods and elements proposed by this study are proved to be simple, easy and flexible ways to enhance the environmental sustainability of the existing building.

Design of a bracing-friction damper system for seismic retrofitting

  • Lee, Sung-Kyung;Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won;Lee, Sang-Hyun;Kim, Jinkoo
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.685-696
    • /
    • 2008
  • This paper deals with the numerical model of a bracing-friction damper system and its deployment using the optimal slip load distribution for the seismic retrofitting of a damaged building. The Slotted Bolted Connection (SBC) type friction damper system was tested to investigate its energy dissipation characteristic. Test results coincided with the numerical ones using the conventional model of a bracing-friction damper system. The placement of this device was numerically explored to apply it to the assumed damaged-building and to evaluate its efficiency. It was found by distributing the slip load that minimizes the given performance indicies based on structural response. Numerical results for the damaged building retrofitted with this slip load distribution showed that the seismic design of the bracing-friction damper system under consideration is effective for the structural response reduction.

Study on Integrated Workflow for Designing Sustainable Tall Building - With Parametric method using Rhino Grasshopper and DIVA for Daylight Optimization

  • Kim, Hyeong-ill
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.21-28
    • /
    • 2016
  • Purpose: The Objective of this study is to explore the capabilities of an integrated modelling and simulation workflow when applied to an experiment-based research process, aimed at deriving daylight optimization strategies specific to tall buildings. Methods: Two methods were devised to apply this workflow with the help of DIVA and Rhino/Grasshopper. The first method is a multiple variant analysis by setting up an appropriate base case and analysing its daylight and energy performance, forming the basis of comparison for subsequent cases for design variants. The second method involved setting up the base case within a site context and conducting a solar irradiation study. An architectural variables such as overhang and shading device, were then defined as inputs in the parametric definition in Grasshopper to control the selected variable. Results: While the first method took advantage of the speed and efficiency of the integrated workflow, the second method was derived based on the ability to directly process simulation data within the integrated, single-software platform of the proposed workflow. Through these methods, different architectural strategies were explored, both to increase daylight penetration and to reduce radiant heat gain. The focus is on methods by which this workflow can be applied to facilitate the experimental derivation of daylight optimization strategies that are specific to tall building design.

Inactivation of Indoor Airborne Fungi Using Cold Atmospheric Pressure Plasma (저온 대기압 플라즈마의 실내공기 중 곰팡이 생장억제 효과)

  • Paik, Namwon;Heo, Sungmin;Lee, Ilyoung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.351-357
    • /
    • 2019
  • Objectives: The objectives of this study were to investigate fungal contamination in a 31-year old university building in Seoul, Korea, and to study the inactivation of fungi using cold atmospheric pressure plasma(CAP). Methods: To investigate the fungal contamination in a university building, air samples were collected from five locations in the building, including two study rooms, a storage room, a laboratory, and a basement. The sampling was performed in a dry season(February to April) and in a wet season(July). To study the inactivation efficacy of fungi by CAP, airborne fungal concentrations were measured before and after the operation of the CAP generator. Results: Humidity was an important factor affecting fungal growth. The airborne fungal concentrations determined in the wet season(July) were significantly higher than those determined in the dry season(February to April). In the basement, the values determined in the dry and wet season were 319 and $3,403CFU/m^3$, respectively. The inactivation efficiency of fungi by CAP was 83-90% over five to nine days of operation. Conclusions: The university building was highly contaminated by airborne fungi, especially in summer. It is concluded that humidity is an important factor affecting fungal growth and CAP is a highly useful technique for inactivation of indoor airborne fungi.

Optimization of Operating Conditions for a 10 kW SOFC System (10kW급 건물용 고체산화물연료전지(SOFC) 시스템 모델을 이용한 운전조건 최적화 연구)

  • LEE, YULHO;YANG, CHANUK;YANG, CHOONGMO;PARK, SANGHYUN;PARK, SUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.49-62
    • /
    • 2016
  • In this study, a solid oxide fuel cell (SOFC) system model including balance of plant (BOP) for building electric power generation is developed to study the effect of operating conditions on the system efficiency and power output. SOFC system modeled in this study consists of three heat-exchangers, an external reformer, burner, and two blowers. A detailed computational cell model including internal reforming reaction is developed for a planer SOFC stack which is operated at intermediate temperature (IT). The BOP models including an external reformer, heat-exchangers, a burner, blowers, pipes are developed to predict the gas temperature, pressure drops and flow rate at every component in the system. The SOFC stack model and BOP models are integrate to estimate the effect of operating parameters on the performance of the system. In this study, the design of experiment (DOE) is used to compare the effects of fuel flow rate, air flow rate, air temperature, current density, and recycle ratio of anode off gas on the system efficiency and power output.

A Study on the CO2 Emission Reduction Effect relating to the Water Usage Reduction in Multi-family Residential Building (공동주택 건물의 상수도 절감량에 따른 CO2 배출량 저감효과에 관한 연구)

  • Cho, Su-Hyun;Kang, Hae-Jin;Rhee, Eon-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.126-133
    • /
    • 2011
  • The current world wide interest in environmental issues has moved from energy conservation to $CO_2$emission reduction. Recently, according to the increase in demand for water resources, insufficient potable water circumstance is supposed, unless there are corresponding in crease in water conservation and water recycling. This study has attempted to analyze $CO_2$emission reduction by water saving strategies like installation water saving devices, rain water harvesting and grey water system. To do this, this research investigates applicable water conservative strategies by literature review and calculated total water saving. The results show that (1) firstly, the water usage and $CO_2$ emission could be reduced up to 44%, (2) $CO_2$ emission reduction by water saving devices and rainwater harvesting system is about 47.7%, and (3) water usage and $CO_2$ emission reduction by grey water system is about 66%. In the future, this paper will be utilized for water management from the early design stage to maintenance stage of water glutton building.

Analysis of Generation Characteristics of a Bifacial BIPV System According to Installation Methods (양면형 BIPV 시스템의 설치환경에 따른 발전특성 분석)

  • Kang, Jun Gu;Kim, Jin Hee;Kim, Jun Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.121-125
    • /
    • 2015
  • BIPV system is one of the best ways to harness PV module. The BIPV system not only produces electricity, but also acts as a building envelope. Thus, it has the strong point of increasing the economical efficiency by applying the PV modules to the buildings. Bifacial solar cells can convert solar energy to electrical energy from both sides of the module. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial soalr cells. Therefore, many of the module manufacturers can easily produce the bifacial solar cells without changing their manufacturing equipment. Moreover, bifacial BIPV system has much potential in building application by utilizing glass to glass structure. However, the performance of bifacial solar cells depends on a variety of factors, ranging from the back surface to surrounding conditions. Therefore, in order to apply bifacial solar cells to buildings, an analysis of bifacial PV module performance should be carried out that includes a consideration of various design elements, and reflects a wide range of installation conditions. As a result it found that the white insulation reflector type can improve the performance of the bifacial BIPV system by 16%, compared to the black insulation reflector type. The performance of the bifacial BIPV was also shown to be influenced by inclination angle, due to changes in both the amount of radiation captured on the front face and the radiation transmitted to the rear face through the transparent space. In this study is limited design condition and installation condition. Accordingly follow-up researches in this part need to be conducted.

A Study on the Multi-sensory Stimulation of Aroma and Color Temperature effects on Neuro-energy (아로마 및 색온도의 다감각자극이 뉴로에너지에 미치는 영향)

  • Kim, Jung-Min;Seo, Kwang-Soo;Kim, Myung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3579-3586
    • /
    • 2015
  • In this study, EEG, HRV, and Vibra image were compared and analyzed in the environmental test room due to stimulation of aroma and color temperature. The condition of the environmental test room was in temperature $25[^{\circ}C]$, relative humidity 50[RH%], air current speed 0.02[m/s] and illuminance 1000[lux] with setting up different sensory stimulation condition which are before exposure, single-sensory stimulation of Jasmine scent, single-sensory stimulation of RED color lighting, and multi-sensory stimulation of Jasmine scent and RED color lighting. The result of this study, at multi-sensory stimulation of Jasmine scent and RED color lighting, relative $S{\alpha}$ wave, SEF50, $SMR/{\theta}$ and SDNN were revitalized, and both sides ${\alpha}$ wave asymmetry index, stress index, fatigue degree, and HRT were decreased. Also, Viba image of tension/anxiety and stress were declined. Therefore multi-sensory stimulation of Jasmine scent and RED color lighting effects to increase the Neuro-energy like amenity, productivity of work efficiency, and concentration.