• 제목/요약/키워드: Building Design Control System

검색결과 485건 처리시간 0.026초

Active control of a nonlinear and hysteretic building structure with time delay

  • Liu, Kun;Chen, Long-Xiang;Cai, Guo-Ping
    • Structural Engineering and Mechanics
    • /
    • 제40권3호
    • /
    • pp.431-451
    • /
    • 2011
  • Time delay inevitably exists in active control systems, and it may cause the degradation of control efficiency or instability of the systems. So time delay needs to be compensated in control design in order to eliminate its negative effect on control efficiency. Today time delay in linear systems has been more studied and some treating methods had been worked out. However, there are few treating methods for time delay in nonlinear systems. In this paper, an active controller for a nonlinear and hysteretic building structure with time delay is studied. The nonlinear and hysteretic behavior of the system is illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, the motion equation of the system with explicit time delay is transformed into the standard state space representation without any explicit time delay. Then the fourth-order Runge-Kutta method and instantaneous optimal control method are applied to the controller design with time delay. Finally, numerical simulations and comparisons of an eight-story building using the proposed time-delay controller are carried out. Simulation results indicate that the control performance will deteriorate if time delay is not taken into account in the control design. The simulations also prove the proposed time delay controller in this paper can not only effectively compensate time delay to get better control effectiveness, but also work well with both small and large time delay problems.

Structural Design of Vibration Controlled Tall Building with Overhang Structure

  • Ishibashi, Yoji;Yoshizawa, Katsuhito;Ogawa, Ichiro;Tamari, Masatoshi;Nagayama, Kenji;Oki, Hatsuka
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.177-183
    • /
    • 2019
  • This paper describes the structural design of a 212 m tall building currently under construction in the Tokiwabashi District Redevelopment Project facing Tokyo Station. In this project there was a requirement to rationally solve many issues arising from the conditions of the redevelopment project. In particular, the following two points were considered to be important from the point of view of structural design. 1) To provide an overhang frame with the perimeter columns on the lower stories inclined, in order to enable a typical floor area that greatly exceeded the limitations of the underground structure shape. 2) To provide high grade seismic performance for the office buildings to be constructed on prime city center land. LSCVCS (Lower Stories Concentrated Vibration Control System) was proposed as the method of rationally designing the overhang frame, which is an extremely disadvantageous element in the structural scheme of the tall building with a large slenderness ratio. LSCVCS is a system to provide effective damping by arranging vibration control devices in a concentrated manner in a lower story with large story height, that produces large deformation in an earthquake. Also, the vibration control devices arranged in the lower story are limited to viscous devices, to take into consideration the residual deformation of the overhang frame after an earthquake. The results of investigations into the specific effects of the system for the seismic design are reported, including Performance-based seismic design.

DEVELOPING A STRUCTURED APPROACH WITH SYSTEMS ENGINEERING TO THE BUILDING DESIGN

  • Azzedine Yahiaoui
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.356-365
    • /
    • 2007
  • The development in the design process is usually based on the choice of a method for designing the system, in which this method is frequently faced with tightening environmental requirements, reducing development cycle times and growing complexity. To tackle such factors, the paper proposes a comprehensive approach focusing on applying systems engineering approach to the building design support. In particular, this paper addresses all capabilities of using some available systems engineering standards (like EIA-632) in the design process. Then, a methodological approach is proposed for the practice of requirements engineering by applying quality assessment and control to design in early phase. The paradigm used, here is to extend and particularly to adapt the work carried out in military and space systems to modern building services by taking into account the semantics of buildings in terms of different engineering fields and architecture issues.

  • PDF

A fuzzy grey predictor for civil frame building via Lyapunov criterion

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-Yuan;Chen, Timothy
    • Computers and Concrete
    • /
    • 제30권5호
    • /
    • pp.357-367
    • /
    • 2022
  • In this paper, we propose an efficient control method that can be transformed into a general building control problem for building structure control using these reliability criteria. To facilitate the calculation of controller H∞, an efficient solution method based on Linear Matrix Inequality (LMI) is introduced, namely H∞-based LMI control. In addition, a self-tuning predictive grey fuzzy controller is proposed to solve the problem caused by wrong parameter selection to eliminates the effect of dynamic coupling between degrees of freedom (DOF) in Self-Tuning Fuzzy Controllers. We prove stability using Lyapunov's stability theorem. To check the applicability of the proposed method, the proposed controller is applied and the control characteristics are determined. The simulation assumes system uncertainty in the controller design and emphasizes the use of acceleration feedback as a practical consideration. Simulation results show that the performance of the proposed controller is impressive, stable, and consistent with the performance of LMI-based methods. Therefore, an effective control method is suitable for seismic reinforcement of civil buildings.

인텔리젼트 빌딩 제어 시스템의 통합 시뮬레이터 개발 (Development of Integrated Simulator for Intelligent Building Control Systems)

  • 배중원;임동진;홍승호;송규동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1199-1201
    • /
    • 1996
  • To Provide pleasant building environment and the ease of maintenance and facility management, many new office buildings are being built as intelligent buildings. Building control systems which are employed in intelligent buildings require advanced types of controllers and varieties of control schemes. Designing and installation of these types of advanced building control systems take a lot of effort and also they are costly. In order to design these systems, it is necessary for the designers to have means to analyze and estimate the performance of control systems. In this paper, the results of the simulator for HVAC and elevator system are presented as the first stage of the development of the integrated simulator. For the development of simulator, ARENA which is the general-purpose software tool for the simulation with reinforced GUI is used.

  • PDF

난방을 비롯한 공기조화의 자연조절 방식과 현대적 응용에 관한 고찰 (A Study on the Passive Principle and its Practical Application of Air-conditioning System)

  • 박순관
    • 한국건축시공학회지
    • /
    • 제4권2호
    • /
    • pp.105-112
    • /
    • 2004
  • The objective of this study is to observe today's situation and direction in relation with the natural air-conditioning and heating system to expand the architectural utilization of natural management for human comfort and energy conservation in architectural design. Also this study to provide the fundamental knowledge and. design-techniques on environment-friendly architecture in connection with 'natural idea in architecture'. In accordance with this intention, this thesis is composed of the following contents : 1) to understand the fundermental concepts about natural air-conditioning and heating system, 2) to review the traditional characteristics in Korean and Southeast Asian architecture related to natural air-conditioning and heating system, 3) to examine modern design-techniques in relation with natural air-conditioning and heating system in the selected area, 4) to attempt to synthesize the whole situation. Environment-friendly architecture using natural ideas and design-techniques in architecture is very important architectural aspect in a current architecture, also for the future. In spite of general considerations, it is expected that this study is use to understand the principle and practical application of natural air-conditioning and heating system in architectural design.

파라미터 불확실성을 고려한 건물의 견실 진동 제어 (Robust Vibration Control for a Building with Parameter Uncertainty)

  • 최재원;김신종;이만형
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, we design a vibration control system that includes a 3-D.O.F. mass-spring-damper structure for the analytical model of a building that is excited at the base of this structure by an external dynamic force, and one Active Mass Damper(AMD) on the top of this structure to generate control forces fro attenuation of the structural response. Two robust controllers based on $\mu$-synthesis and H$\infty$ optimal control are designed for the structural system to show that the performance of a control system can be degraded by some parameter uncertainties such as mass, stiffness coefficients, and/or damping coefficients. The performance of the two controllers are compared in terms of nominal performance, robust stability and robust performance by simulations.

  • PDF

AMD를 이용한 건물의 능동 진동 제어를 위한 강인 포화 제어기의 유용성에 관한 실험적 검증 (Experimental Verification on the Availability of Robust Saturation Controller for the Active Vibration Control of Building using AMD)

  • 임채욱;문석준;박영진
    • 한국지진공학회논문집
    • /
    • 제10권2호
    • /
    • pp.83-90
    • /
    • 2006
  • 건물의 능동 진동 제어에 있어서 제어기의 제어입력의 포화와 건물의 파라미터 불확실성을 동시에 고려하는 제어 방법이 필요하다. 저자들의 이전 논문에서는 제어 입력에 포화가 존재하는 불확실한 선형 시불변계에 대하여 강인 안정성과 제어 성능이 보장되는 강인 포화 제어기를 제안하였다. 본 논문에서는 능동 질량 감쇠기 (AMD)가 설치된 건물의 능동 진동 제어에 대한 제안된 강인 포화 제어기의 유용성을 실험적으로 검증한다. 실험은 유압식 AMD가 설치된 2층의 건물 모형에 대하여 수행된다.

화재시뮬레이션을 이용한 터널 내 화재시 제연설비 필요성 검토 (A Study on the necessity of smoke control system in the tunnel fire using fire simulation)

  • 하예진;전준호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.241-242
    • /
    • 2022
  • In this study, fire simualtion was performed to examine the necessity of smoke control system in the tunnel fire. The heat release rate was set to 5 MW and 20MW, and the visibility was measured at 1.8 m, which is the breathing limit, when there is no jet fan. Through this, it was confirmed that 5 MW did not affect the visibility even without the jet fan, and in the case of 20 MW, a jet fan was required to secure the visibility. The visibility was measured at the same location by installing the jet fan, and the simulation was performed by reducing the design volume flow rate of 8.5 m3/s by 80% and 50%, respectively. As a result, it was confirmed that sufficient visibility was secured when the design flow rate and 80% were reduced.

  • PDF

구조물 진동제어를 위한 Immune Algorithm을 이용한 Active PID 제어기 설계 (A Design of An Active PID control using Immune Algorithm for Vibration Control of Building Structure)

  • 이영진;조현철;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.72-74
    • /
    • 2005
  • In this paper, we propose an adaptive PID controller using a cell-mediated immune response to improve a PID control performance. The proposed controller is based on the specific immune response of the biological immune system that is cell-mediated immunity. The immune system of organisms in the real body regulates the antibody and the T-cells to protect an attack from the foreign materials like virus, germ cells, and other antigens. It has similar characteristics that are the adaptation and robustness to overcome disturbances and to control the plant of engineering application. We first build a model of the T-cell regulated immune response mechanism and then designed an I-PID controller focusing on the T-cell regulated immune response of the biological immune system. We apply the proposed methodology to building structures to mitigate vibrations due to strong winds for evaluation of control performances. Through computer simulations, system responses are illustrated and additionally compared to traditional control approaches.

  • PDF